This paper presents the theoretical development and experimental implementation of a sensing technique for the robust and precise localization of a robotic wheelchair. Estimates of the vehicle’s position and orientation are obtained, based on camera observations of visual markers located at discrete positions within the environment. A novel implementation of a particle filter on camera sensor space (Camera-Space Particle Filter) is used to combine visual observations with sensed wheel rotations mapped onto a camera space through an observation function. The camera space particle filter fuses the odometry and vision sensors information within camera space, resulting in a precise update of the wheelchair’s pose. Using this approach, an inexpensive implementation on an electric wheelchair is presented. Experimental results within three structured scenarios and comparative performance using an Extended Kalman Filter (EKF) and Camera-Space Particle Filter (CSPF) implementations are discussed. The CSPF was found to be more precise in the pose of the wheelchair than the EKF since the former does not require the assumption of a linear system affected by zero-mean Gaussian noise. Furthermore, the time for computational processing for both implementations is of the same order of magnitude.
This article details the development and evaluation of an autonomous acoustic localization system for robots based on Time Delay Estimation (TDE) and signal intensity, principally aimed at robotic service applications. Time Delay Estimation is carried out through an arrangement of two microphones. The time delay criteria are supported with the signal intensity of a third microphone (coplanar arrangement), which permits discerning precisely the location of the source. This third microphone also feeds a voice identification system, which lets the system respond only to specific voice commands. The prediction algorithm operates by comparing the sensed TDE against the theoretical values of the acoustic propagation model, results that are then weighted according to the signal's mean intensity. A broad set of laboratory experiments is reported on a real prototype that support the system's performance, showing average errors of Azimuth of 18.1 degrees and elevation of 7.6 degrees. Particularly, the analysis conducted for the estimation permits defining the necessary and sufficient conditions to establish in real time a single position in the space of origin, with sufficient precision for autonomous navigation applications ResumenEste artículo detalla el desarrollo y evaluación de un sistema de localización acústico autónomo para robots basado en TDE e intensidad de la señal, principalmente orientado hacia aplicaciones de robótica de servicios. La estimación del tiempo de retardo se realiza mediante un arreglo de dos micrófonos. El criterio del tiempo de retardo se apoya con la intensidad de la señal de un tercer micrófono (arreglo coplanar) que permite discernir de forma precisa la localización de la fuente. Este tercer micrófono alimenta también un sistema de identificación vocal, que permite que el sistema responda sólo a comandos vocales específicos. El algoritmo de predicción opera comparando el TDE sensado frente a los valores teóricos del modelo de propagación acústica, resultados que luego son ponderados de acuerdo a la intensidad promedio de la señal. Se reporta un amplio conjunto de experimentos en laboratorio sobre un prototipo real que soportan el desempeño del sistema, mostrando errores promedio en azimut de 18.1 grados y de elevación de 7.6 grados. En particular, el análisis desarrollado a partir de la estimación permite definir las condiciones necesarias y suficientes para establecer en tiempo real una posición única en el espacio de origen, con suficiente precisión para aplicaciones de navegación autónoma.Palabras clave: Identificación vocal, localización acústica, tiempo estimado de retardo
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.