Chikungunya virus (CHIKV) is an alphavirus that is primarily transmitted by Aedes species mosquitoes. Though reports of an illness consistent with chikungunya date back over 200 years, CHIKV only gained worldwide attention during a massive pandemic that began in East Africa in 2004. Chikungunya, the clinical illness caused by CHIKV, is characterized by a rapid onset of high fever and debilitating joint pain, though in practice, etiologic confirmation of CHIKV requires the availability and use of specific laboratory diagnostics. Similar to infections caused by other arboviruses, CHIKV infections are most commonly detected with a combination of molecular and serological methods, though cell culture and antigen detection are reported. This review provides an overview of available CHIKV diagnostics and highlights aspects of basic virology and epidemiology that pertain to viral detection. Although the number of chikungunya cases has decreased since 2014, CHIKV has become endemic in countries across the tropics and will continue to cause sporadic outbreaks in naive individuals. Consistent access to accurate diagnostics is needed to detect individual cases and initiate timely responses to new outbreaks.
Yellow fever (YF) is the prototypical hemorrhagic fever and results from infection with yellow fever virus (YFV), which is endemic to regions of Africa and South America. Despite the availability of an effective vaccine, YFV continues to cause disease throughout regions where it is endemic, including intermittent large outbreaks among undervaccinated populations. A number of diagnostic methods and assays have been described for the detection of YFV infection, including viral culture, molecular testing, serology, and antigen detection. Commercial diagnostics are not widely available, and testing is generally performed at a small number of reference laboratories. The goal of this article, therefore, is to review available clinical diagnostics for YFV, which may not be familiar to many practitioners outside areas where it is endemic. Additionally, we identify gaps in our current knowledge about YF that pertain to diagnosis and describe interventions that may improve YFV detection.
Background In 2018, Paraguay experienced a large dengue virus (DENV) outbreak. The primary objective of this study was to characterize dengue cases in the Central Department, where the majority of cases occur, and identify factors associated with DENV infection. Methods Patients were enrolled from January-May 2018 if they presented with a suspected arboviral illness. Acute-phase specimens (≤8 days after symptom onset) were tested using rRT-PCR, a rapid diagnostic test for DENV nonstructural protein 1 (NS1) and anti-DENV IgM and IgG, and ELISA for IgG against NS1 from Zika virus (ZIKV). Results A total of 231 patients were enrolled (95.2% adults) at two sites: emergency care and an outpatient clinical site. Patients included 119 (51.5%) dengue cases confirmed by rRT-PCR (n = 115, 96.6%) and/or the detection of NS1 and anti-DENV IgM (n = 4, 3.4%). DENV-1 was the predominant serotype (109/115, 94.8%). Epidemiologically, dengue cases and non-dengue cases were similar, though dengue cases were less likely to reside in a house/apartment or report a previous dengue case. Clinical and laboratory findings associated with dengue included red eyes, absence of sore throat, leucopenia and thrombocytopenia. At an emergency care site, 26% of dengue cases (26/100) required hospitalization. In univariate analysis, hospitalization was associated with increased viral load, anti-DENV IgG, and thrombocytopenia. Among dengue cases that tested positive for IgG against ZIKV NS1, the odds of DENV NS1 detection in the acute phase were decreased 10-fold (OR 0.1, 0.0–0.3). Conclusions Findings from a predominantly adult population demonstrate clinical and laboratory factors associated with DENV infections and the potential severity of dengue in this group. The combination of viral load and specific IgG antibodies warrant further study as a prognostic to identify patients at risk for severe disease.
SARS-CoV-2 variant detection relies on resource-intensive whole-genome sequencing methods. We sought to develop a scalable protocol for variant detection and surveillance in Paraguay, pairing rRT-PCR for spike mutations with Nanopore sequencing. A total of 201 acute-phase nasopharyngeal samples were included. Samples were positive for the SARS-CoV-2 N2 target and tested with the Spike SNP assay to detect mutations associated with the following variants: alpha (501Y), beta/gamma (417variant/484K/501Y), delta (452R/478K), and lambda (452Q/490S). Spike SNP calls were confirmed using amplicon (Sanger) sequencing and whole-genome (Nanopore) sequencing on a subset of samples with confirmed variant lineages. Samples had a mean N2 Ct of 20.8 (SD 5.6); 198/201 samples (98.5%) tested positive in the Spike SNP assay. The most common genotype was 417variant/484K/501Y, detected in 102/198 samples (51.5%), which was consistent with the P.1 lineage (gamma variant) in Paraguay. No mutations (K417 only) were found in 64/198 (32.3%), and K417/484K was identified in 22/198 (11.1%), consistent with P.2 (zeta). Seven samples (3.5%) tested positive for 452R without 478K, and one sample with genotype K417/501Y was confirmed as B.1.1.7 (alpha). The results were confirmed using Sanger sequencing in 181/181 samples, and variant calls were consistent with Nanopore sequencing in 29/29 samples. The Spike SNP assay could improve population-level surveillance for mutations associated with SARS-CoV-2 variants and inform the judicious use of sequencing resources.
We report the design and evaluation of an rRT-PCR for MAYV. Given the concern for MAYV emergence in the Americas and the few molecular tests that have been evaluated in the literature, this assay should provide a useful diagnostic for patients with an acute febrile illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.