Facial recognition is fundamental for a wide variety of security systems operating in real-time applications. Recently, several deep neural networks algorithms have been developed to achieve state-of-the-art performance on this task. The present work was conceived due to the need for an efficient and low-cost processing system, so a real-time facial recognition system was proposed using a combination of deep learning algorithms like FaceNet and some traditional classifiers like SVM, KNN, and RF using moderate hardware to operate in an unconstrained environment. Generally, a facial recognition system involves two main tasks: face detection and recognition. The proposed scheme uses the YOLO-Face method for the face detection task which is a high-speed real-time detector based on YOLOv3, while, for the recognition stage, a combination of FaceNet with a supervised learning algorithm, such as the support vector machine (SVM), is proposed for classification. Extensive experiments on unconstrained datasets demonstrate that YOLO-Face provides better performance when the face under an analysis presents partial occlusion and pose variations; besides that, it can detect small faces. The face detector was able to achieve an accuracy of over 89.6% using the Honda/UCSD dataset which runs at 26 FPS with darknet-53 to VGA-resolution images for classification tasks. The experimental results have demonstrated that the FaceNet+SVM model was able to achieve an accuracy of 99.7% using the LFW dataset. On the same dataset, FaceNet+KNN and FaceNet+RF achieve 99.5% and 85.1%, respectively; on the other hand, the FaceNet was able to achieve 99.6%. Finally, the proposed system provides a recognition accuracy of 99.1% and 49 ms runtime when both the face detection and classifications stages operate together.
Facial recognition systems has captivated research attention in recent years. Facial recognition technology is often required in real-time systems. With the rapid development, diverse algorithms of machine learning for detection and facial recognition have been proposed to address the challenges existing. In the present paper we proposed a system for facial detection and recognition under unconstrained conditions in video sequences. We analyze learning based and hand-crafted feature extraction approaches that have demonstrated high performance in task of facial recognition. In the proposed system, we compare different traditional algorithms with the avant-garde algorithms of facial recognition based on approaches discussed. The experiments on unconstrained datasets to study the face detection and face recognition show that learning based algorithms achieves a remarkable performance to face the challenges in real-time systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.