The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.
Species of the genera Cystoseira, Ericaria, Gongolaria, and Sargassum (family Sargassaceae) are key components of the Mediterranean-Atlantic marine forests, essential for biodiversity and ecosystem functioning. Populations of these foundational species are particularly vulnerable to anthropogenic impacts, likely to be intensified under future scenarios of climate change. The decline and even disappearance of these species have been reported in different areas of the world. At Madeira Island (NE Atlantic), populations of Gongolaria abies-marina, Ericaria selaginoides, Sargassum vulgare, and Sargassum filipendula, the most ecologically relevant species in Macaronesian marine forests, have been suffering a drastic decline during the last decades, especially on the southern coast of the island, where anthropogenic pressure is higher than on the north coast. The lack of sufficient temporal coverage on qualitative and quantitative studies of Sargassaceae communities in Madeira poses a challenge to establish a specific period for this decline. Consulting qualitative studies and historical records, we have set for the first time a timeline that shows an evident decrease in Sargassaceae populations in the last 20 years on Madeira Island. Following this timeline, we pinpoint the start of this decline in the first decade of the 2000s. This can be particularly confirmed for places like Funchal and Reis Magos, with significantly higher historical records. Currently, most benthic communities on shallow subtidal rocky reefs along the south coast are dominated by sea urchins and crustose coralline algae, the so-called sea urchin barrens. However, in some cases, they are entirely covered by a layer of sediment. We discuss the possible factors contributing to these drastic changes, bringing Madeira’s marine forests to a dramatic decline. As many animal species rely on marine forests, the decline of Sargassaceae populations represents an invaluable ecological loss for the coastal ecosystem of the island.
Marine forests ecosystems are typical of temperate rocky benthic areas. These systems are formed by canopy-forming macroalgae (Laminariales, Tilopteridales, and Fucales) of high ecological value that provide numerous ecosystem services. These key species are also indicators of good environmental status. In recent decades, marine forests have been threatened by different impacts of local and global origin, putting their stability and survival in question. On a global scale, in many temperate areas of the planet, marine forests have been replaced by “sea-urchins barrens.” We present a general overview of sea-urchins’ population status in the archipelagos of Azores, Webbnesia (Madeira, Selvagens, and Canary Islands) and Cabo Verde, focusing on their role in the maintenance of the so-called “alternate stable state.” After an in-depth evaluation of the different anthropogenic and environmental pressures, we conclude that sea-urchins population explosion has been facilitated in the benthic habitats of Madeira and Canary Islands, preventing the recovery of canopy-forming macroalgae assemblages and being one of the main drivers in maintaining a stable barren state. Diadema africanum is the main barrens-forming species in Webbnesia, where it reaches high densities and strongly impacts macroalgal assemblages. On the other hand, in the most pristine areas, such as the Selvagens Islands and other Marine Protected Areas from the Canary Islands, the density of D. africanum is up to 65% lower than in the nearby Madeira Island, and macroalgal communities are preserved in good status. This information is critical for marine environmental management, highlighting the urgent need for implementation of appropriate control mechanisms and restoration actions headed to the conservation of marine forests in Macaronesian archipelagos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.