Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.
Early sensing of pathogenic bacteria by the host immune system is important to develop effective mechanisms to kill the invader. Microbial recognition, activation of signaling pathways, and effector mechanisms are sequential events that must be highly controlled to successfully eliminate the pathogen. Host recognizes pathogens through pattern-recognition receptors (PRRs) that sense pathogen-associated molecular patterns (PAMPs). Some of these PRRs include Toll-like receptors (TLRs), nucleotide-binding oligomerization domain-like receptors (NLRs), retinoic acid-inducible gene-I- (RIG-I-) like receptors (RLRs), and C-type lectin receptors (CLRs). TLRs and NLRs are PRRs that play a key role in recognition of extracellular and intracellular bacteria and control the inflammatory response. The activation of TLRs and NLRs by their respective ligands activates downstream signaling pathways that converge on activation of transcription factors, such as nuclear factor-kappaB (NF-κB), activator protein-1 (AP-1) or interferon regulatory factors (IRFs), leading to expression of inflammatory cytokines and antimicrobial molecules. The goal of this review is to discuss how the TLRs and NRLs signaling pathways collaborate in a cooperative or synergistic manner to counteract the infectious agents. A deep knowledge of the biochemical events initiated by each of these receptors will undoubtedly have a high impact in the design of more effective strategies to control inflammation.
Summary
Microbial fructosyltransferases are polymerases that are involved in microbial fructan (levan, inulin and fructo‐oligosaccharide) biosynthesis. Structurally, microbial fructosyltransferase proteins share the catalytic domain of glycoside hydrolases 68 family and are grouped in seven phylogenetically related clusters. Fructosyltransferase‐encoding genes are organized in operons or in clusters associated with other genes related to carbohydrate metabolism or fructosyltransferase secretion. Fructosyltransferase gene expression is mainly regulated by two‐component systems or phosphorelay mechanisms that respond to sucrose availability or other environmental signals. Microbial fructans are involved in conferring resistance to environmental stress such as water deprivation, nutrient assimilation, biofilm formation, and as virulence factors in colonization. As a result of the biological and industrial importance of fructans, fructosyltransferases have been the subject of extensive research, conducted to improve their enzymatic activity or to elucidate their biological role in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.