ResumenLos aceros Dual Phase (DP) han encontrado recientemente una fuerte aplicación en elementos estructurales en la industria automotriz, debido a la necesidad de disminuir peso. La soldadura de estos materiales cobra particular importancia considerando su aplicación estructural y los procesos relacionados en su fabricación. En particular la soldadura de resistencia por punto (RSW) y semiautomática con alambre macizo y protección gaseosa (GMAW) RSW, GMAW and PAW. In
Palabras clave: aceros Dual Phase, PAW, GMAW, RSW, ZAC
Abstract: Dual Phase steels (DP) have been used recently as an interesting option for structural elements, specialy in automotive industry, due to weight reduce requirements. Welding of these materials becomes particularly important considering their application as structural elements and the related manufacturing methods. In particular resistance spot welding (RSW) and gas metal arc welding (GMAW) are widely used in the automotive manufacturing. The plasma arc welding (PAW) has the charateristic, within arc welding processes, to involve the highest energy density, being this parameter interesting to certain applications on automative industry (tailor welded blanks). The objective of this work is to study the microstructural evolution and properties of welded DP steels by mean of
Friction Stir Processing (FSP) is a variant of Friction Stir Welding, and can be used to modify the materials microstructure to functionalize it. Superplastic forming is a technological process used to produce components with very complex shapes. In the last two decades it has been a topic of major development. In Fine Structure Superplasticity (FSSP), the initial grain size exerts a strong influence on the superplastic strain rate and temperatures. Refining grain size (GS) the parameters (temperature and strain rate) of superplastic forming could be optimized. Thermal stability is also an important factor to obtain superplasticity. FSP is used to refine GS, but the optimum processing parameters are still under study over different materials. Corrosion resistance can be affected by FSP too, but the information about it is scarce. In the present study, 7075-T651 aluminium alloy was friction stir processed under different conditions in order to improve superplastic behavior. Tool profile, rotation rate and traverse speed were analyzed. Microstructures with <4 μm grain size were obtained. The maximum superplastic elongations, in a range of 740 to 900%, at 400°C were obtained at 1x10-2s-1strain rate. The results were discussed in terms of constitutive equations and microstructure evolution. Localized corrosion potentials were obtained. Localized corrosion resistance was affected by friction stir processing.
ResumenLas tensiones residuales pueden ser un aspecto de relevancia en la integridad estructural de componentes en servicio, pudiendo presentar una importante influencia sobre la vida a la fatiga, entre otros mecanismos de falla. El proceso de soldadura por fricción-agitación (FSW)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.