a b s t r a c tA high fidelity approach for wind turbine aero-elastic simulations including explicit representation of the atmospheric wind turbulence is presented. The approach uses a dynamic overset computational fluid dynamics (CFD) code for the aerodynamics coupled with a multi-body dynamics (MBD) code for the motion responses to the aerodynamic loads. Mann's wind turbulence model was implemented into the CFD code as boundary and initial conditions. The wind turbulence model was validated by comparing the theoretical one-point spectrum for the three components of the velocity fluctuations, and by comparing the expected statistics from the CFD simulated wind turbulent field with the explicit wind turbulence inlet boundary from Mann model. Extensive simulations based on the proposed coupled approach were conducted with the conceptual NREL 5-MW offshore wind turbine in an increasing level of complexity, analyzing the turbine behavior as elasticity, wind shear and atmospheric wind turbulence are added to the simulations. Results are compared with the publicly available simulations results from OC3 participants, showing good agreement for the aerodynamic loads and blade tip deflections in time and frequency domains. Wind turbulence/turbine interaction was examined for the wake flow. It was found that explicit turbulence addition results in considerably increased wake diffusion. The coupled CFD/MBD approach can be extended to include multibody models of the shaft, bearings, gearbox and generator, resulting in a promising tool for wind turbine design under complex operational environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.