We consider the following problem known as simultaneous geometric graph embedding (SGE). Given a set of planar graphs on a shared vertex set, decide whether the vertices can be placed in the plane in such a way that for each graph the straight-line drawing is planar. We partially settle an open problem of Erten and Kobourov [5] by showing that even for two graphs the problem is NP-hard. We also show that the problem of computing the rectilinear crossing number of a graph can be reduced to a simultaneous geometric graph embedding problem; this implies that placing SGE in NP will be hard, since the corresponding question for rectilinear crossing number is a longstanding open problem. However, rather like rectilinear crossing number, SGE can be decided in PSPACE.
Universal pointsets can be used for visualizing multiple relationships on the same set of objects or for visualizing dynamic graph processes. In simultaneous geometric embeddings, the same point in the plane is used to represent the same object as a way to preserve the viewer's mental map. In colored simultaneous embeddings this restriction is relaxed, by allowing a given object to map to a subset of points in the plane. Specifically, consider a set of graphs on the same set of n vertices partitioned into k colors. Finding a corresponding set of k-colored points in the plane such that each vertex is mapped to a point of the same color so as to allow a straightline plane drawing of each graph is the problem of colored simultaneous geometric embedding.Work on this paper began at 570 Algorithmica (2011) 60: 569-592 For n-vertex paths, we show that there exist universal pointsets of size n, colored with two or three colors. We use this result to construct colored simultaneous geometric embeddings for a 2-colored tree together with any number of 2-colored paths, and more generally, a 2-colored outerplanar graph together with any number of 2-colored paths. For n-vertex trees, we construct small near-universal pointsets for 3-colored caterpillars of size n, 3-colored radius-2 stars of size n + 3, and 2-colored spiders of size n. For n-vertex outerplanar graphs, we show that these same universal pointsets also suffice for 3-colored K 3 -caterpillars, 3-colored K 3 -stars, and 2-colored fans, respectively. We also present several negative results, showing that there exist a 2-colored planar graph and pseudo-forest, three 3-colored outerplanar graphs, four 4-colored pseudo-forests, three 5-colored pseudo-forests, five 5-colored paths, two 6-colored biconnected outerplanar graphs, three 6-colored cycles, four 6-colored paths, and three 9-colored paths that cannot be simultaneously embedded.
Abstract. We consider characterizations of level planar trees. Healy et al. [8] characterized the set of trees that are level planar in terms of two minimal level non-planar (MLNP) patterns. Fowler and Kobourov [7] later proved that the set of patterns was incomplete and added two additional patterns. In this paper, we show that the characterization is still incomplete by providing new MLNP patterns not included in the previous characterizations. Moreover, we introduce an iterative method to create an arbitrary number of MLNP patterns, thus proving that the set of minimal patterns that characterizes level planar trees is infinite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.