Nanoinformatics is an emerging research field that uses informatics techniques to collect, process, store, and retrieve data, information, and knowledge on nanoparticles, nanomaterials, and nanodevices and their potential applications in health care. In this paper, we have focused on the solutions that nanoinformatics can provide to facilitate nanotoxicology research. For this, we have taken a computational approach to automatically recognize and extract nanotoxicology-related entities from the scientific literature. The desired entities belong to four different categories: nanoparticles, routes of exposure, toxic effects, and targets. The entity recognizer was trained using a corpus that we specifically created for this purpose and was validated by two nanomedicine/nanotoxicology experts. We evaluated the performance of our entity recognizer using 10-fold cross-validation. The precisions range from 87.6% (targets) to 93.0% (routes of exposure), while recall values range from 82.6% (routes of exposure) to 87.4% (toxic effects). These results prove the feasibility of using computational approaches to reliably perform different named entity recognition (NER)-dependent tasks, such as for instance augmented reading or semantic searches. This research is a “proof of concept” that can be expanded to stimulate further developments that could assist researchers in managing data, information, and knowledge at the nanolevel, thus accelerating research in nanomedicine.
Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14-, and CD34-) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O’Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.
In cartilage tissue engineering, biphasic scaffolds (BSs) have been designed not only to influence the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone, promoting the implant’s integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a BS based on the assembly of a cartilage phase constituted by fibroin biofunctionalyzed with a bovine cartilage matrix, cellularized with differentiated autologous pre-chondrocytes and well attached to a bone phase (decellularized bovine bone) to promote cartilage regeneration in a model of joint damage in pigs. BSs were assembled by fibroin crystallization with methanol, and the mechanical features and histological architectures were evaluated. The scaffolds were cellularized and matured for 12 days, then implanted into an osteochondral defect in a porcine model (n = 4). Three treatments were applied per knee: Group I, monophasic cellular scaffold (single chondral phase); group II (BS), cellularized only in the chondral phase; and in order to study the influence of the cellularization of the bone phase, Group III was cellularized in chondral phases and a bone phase, with autologous osteoblasts being included. After 8 weeks of surgery, the integration and regeneration tissues were analyzed via a histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular BSs reached a Young’s modulus of 805.01 kPa, similar to native cartilage. In vitro biological studies revealed the chondroinductive ability of the BSs, evidenced by an increase in sulfated glycosaminoglycans and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, in Group I, the defects were not reconstructed. In Groups II and III, a good integration of the implant with the surrounding tissue was observed. Defects in group II were fulfilled via hyaline cartilage and normal bone. Group III defects showed fibrous repair tissue. In conclusion, our findings demonstrated the efficacy of a biphasic and bioactive scaffold based on silk fibroin and cellularized only in the chondral phase, which entwined chondroinductive features and a biomechanical capability with an appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.
Ceramics and bioceramics, such as hydroxyapatite and zirconium, are used in bone tissue engineering. Hydroxyapatite has chemical properties similar to bone while zirconium offers suitable mechanical properties. The aim of this article is to evaluate the ability to support cell growth and osteoblastic mineralization of hydroxyapatite-zirconium obtained by a new system based on different low temperatures, such as 873 K (HZ600), 923 K (HZ650) and 973 K (HZ700). Hydroxyapatite-zirconia obtained by this new system was examined in terms of thermogravimetric features and x-ray diffractograms. Furthermore, the ability for supporting osteoblast growth and mineralization were analyzed. By x-ray diffraction analysis, we clearly demonstrated that no high-temperature processing was required. Moreover, it is possible to form tetragonal-zirconium at 923 K. Proliferation assays showed that osteoblast growth was not influenced by any of the composite evaluated. Regarding the osteogenic marker Col1, a 2-fold increase in expression was observed for HZ650 compared to HZ600 and HZ700. Interestingly, osteoblasts grown on HZ650 showed globular accretions covered with collagen bundles and calcium-rich extracellular matrix whereas HZ600 and HZ700 showed no phosphate or calcium deposits. This study demonstrated that at 923 K it is possible to generate stable tetragonal-zirconium and the resulting HZ650 composite is able to promote a suitable osteoblast mineralization process.
Joint cartilage damage affects 10-12% of the world's population. Medical treatments improve the short-term quality of life of affected individuals but lack a long-term effect due to injury progression into fibrocartilage. The use of mesenchymal stem cells (MSCs) is one of the most promising strategies for tissue regeneration due to their ability to be isolated, expanded and differentiated into metabolically active chondrocytes to achieve long-term restoration. For this purpose, human adipose-derived MSCs (Ad-MSCs) were isolated from lipectomy and grown in xeno-free conditions. To establish the best differentiation potential towards a stable chondrocyte phenotype, isolated Ad-MSCs were sequentially exposed to five differentiation schemes of growth factors in previously designed three-dimensional biphasic scaffolds with incorporation of a decellularized cartilage matrix as a bioactive ingredient, silk fibroin and bone matrix, to generate a system capable of being loaded with pre-differentiated Ad-MSCs, to be used as a clinical implant in cartilage lesions for tissue regeneration. Chondrogenic and osteogenic markers were analyzed by reverse transcription-quantitative PCR and cartilage matrix generation by histology techniques at different time points over 40 days. All groups had an increased expression of chondrogenic markers; however, the use of fibroblast growth factor 2 (10 ng/ml) followed by a combination of insulin-like growth factor 1 (100 ng/ml)/TGFβ1 (10 ng/ml) and a final step of exposure to TGFβ1 alone (10 ng/ml) resulted in the most optimal chondrogenic signature towards chondrocyte differentiation and the lowest levels of osteogenic expression, while maintaining stable collagen matrix deposition until day 33. This encourages their possible use in osteochondral lesions, with appropriate properties for use in clinical patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.