Increasingly stringent environmental regulations in different sectors of industry, especially the aeronautical sector, suggest the need for more investigations regarding the effect of environmentally friendly corrosion protective processes. Passivation is a finishing process that makes stainless steels more rust resistant, removing free iron from the steel surface resulting from machining operations. This results in the formation of a protective oxide layer that is less likely to react with the environment and cause corrosion. The most commonly used passivating agent is nitric acid. However, it is know that high levels of toxicity can be generated by using this agent. In this work, a study has been carried out into the electrochemical behavior of 15-5PH (precipitation hardening) and 17-4PH stainless steels passivated with (a) citric and (b) nitric acid solutions for 60 and 90 min at 49 °C, and subsequently exposed to an environment with chlorides. Two electrochemical techniques were used: electrochemical noise (EN) and potentiodynamic polarization curves (PPC) according to ASTM G199-09 and ASTM G5-13, respectively. The results obtained indicated that, for both types of steel, the passive layer formed in citric acid as passivating solution had very similar characteristics to that formed with nitric acid. Furthermore, after exposure to the chloride-containing solution and according with the localization index (LI) values obtained, the stainless steels passivated in citric acid showed a mixed type of corrosion, whereas the steels passivated in nitric acid showed localized corrosion. Overall, the results of the R n values derived show very low and similar corrosion rates for the stainless steels passivated with both citric and nitric acid solutions.
The objective of this work was to study is use electrochemical techniques to determinate the growth conditions, characteristics and resistance of passive layers of stainless steel (SS): 304 austenitic, 17-4PH (precipitation hardening) and 15-5PH. Passivation of the SS was performed in 15% citric acid at temperatures of 25 and 49 °C. The corrosion kinetics was obtained using the electrochemical technique as potentiodynamic polarization (PP), in a three-electrode system. The electrolytes used were sodium chloride (5 wt. % NaCl) and sulfuric acid (1 wt. % H 2 SO 4). Passivation in citric acid allows obtain passive layers at temperatures of 49°C with immersion times of 30 minutes. In precipitation hardening steels, passive layers up to 360 mV in sodium chloride. Can be obtained. In sulfuric acid, there is a mechanism of passivationtranspassivation-secondary passivation, this due to the high electropositive values of potential.
Aluminum is a material widely used in aeronautical and transport industries due to its excellent mechanical and corrosion resistance properties. Unfortunately, aluminum alloys are susceptible to corrosion, which limits their use in some corrosive environments. The aim of this work is to characterize hard coat film fabricated by anodizing in a citric–sulfuric acid system using electrochemical techniques. The anodization process was carried out using an aluminum alloy AA 6061 anodization bath: a mix of citric and sulfuric acid solutions were used. For the anodizing process, two current densities were used, 1 and 7.2 A·cm−2. Anodized specimens obtained under different conditions were exposed to a 3.5 wt.% NaCl solution, and their electrochemical behavior was studied by electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization (CPP) according to ASTM G106-15 and ASTM G5-13, respectively. Scanning electron microscopy (SEM) was employed to determinate the morphology and thickness of coatings. The results showed improved corrosion resistance in 6061 aluminum anodized in citric–sulfuric acid electrolyte compared to those anodized in sulfuric acid solution.
Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14-, and CD34-) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O’Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.
In cartilage tissue engineering, biphasic scaffolds (BSs) have been designed not only to influence the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone, promoting the implant’s integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a BS based on the assembly of a cartilage phase constituted by fibroin biofunctionalyzed with a bovine cartilage matrix, cellularized with differentiated autologous pre-chondrocytes and well attached to a bone phase (decellularized bovine bone) to promote cartilage regeneration in a model of joint damage in pigs. BSs were assembled by fibroin crystallization with methanol, and the mechanical features and histological architectures were evaluated. The scaffolds were cellularized and matured for 12 days, then implanted into an osteochondral defect in a porcine model (n = 4). Three treatments were applied per knee: Group I, monophasic cellular scaffold (single chondral phase); group II (BS), cellularized only in the chondral phase; and in order to study the influence of the cellularization of the bone phase, Group III was cellularized in chondral phases and a bone phase, with autologous osteoblasts being included. After 8 weeks of surgery, the integration and regeneration tissues were analyzed via a histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular BSs reached a Young’s modulus of 805.01 kPa, similar to native cartilage. In vitro biological studies revealed the chondroinductive ability of the BSs, evidenced by an increase in sulfated glycosaminoglycans and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, in Group I, the defects were not reconstructed. In Groups II and III, a good integration of the implant with the surrounding tissue was observed. Defects in group II were fulfilled via hyaline cartilage and normal bone. Group III defects showed fibrous repair tissue. In conclusion, our findings demonstrated the efficacy of a biphasic and bioactive scaffold based on silk fibroin and cellularized only in the chondral phase, which entwined chondroinductive features and a biomechanical capability with an appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.