Previous work showed that in the adult sturgeon an intrapericardial, nonmyocardial segment is interposed between the conus arteriosus of the heart and the ventral aorta. The present report illustrates the ontogeny of this intermediate segment in Acipenser naccarii. The sample studied consisted of 178 alevins between 1 and 24 days posthatching. They were examined using light and electron microscopy. Our observations indicate that the entire cardiac outflow tract displays a myocardial character during early development. Between the fourth and sixth days posthatching, the distal portion of the cardiac outflow tract undergoes a phenotypical transition, from a myocardial to a smooth muscle-like phenotype. The length of this region with regard to the whole outflow tract increases only moderately during subsequent developmental stages, becoming more and more cellularized. The cells soon organize into a pattern that resembles that of the arterial wall. Elastin appears at this site by the seventh day posthatching. Therefore, two distinct components, proximal and distal, can be recognized from the fourth day posthatching in the cardiac outflow tract of A. naccarii. The proximal component is the conus arteriosus, characterized by its myocardial nature and the presence of endocardial cushions. The distal component transforms into the intrapericardial, nonmyocardial segment mentioned above, which is unequivocally of cardiac origin. We propose to designate this segment the "bulbus arteriosus" because it is morphogenetically equivalent to the bulbus arteriosus of teleosts. The present findings, together with data from the literature, point to the possibility that cells from the cardiac neural crest are involved in the phenotypical transition that takes place at the distal portion of the cardiac outflow tract, resulting in the appearance of the bulbus arteriosus. Moreover, they suggest that the cardiac outflow tract came to be formed by a bulbus arteriosus and a conus arteriosus from an early period of the vertebrate evolutionary story. Finally, we hypothesize that the embryonic truncus of birds and mammals is homologous to the bulbus arteriosus of fish.
The conus (bulbo-ventricular) valves of teleosts perform a key function in the control of blood backflow during ventricular diastole. However, the structural characteristics of these valves are almost unknown. This paper presents a systematic anatomical, histological and structural study of the conus valves of the adult gilthead seabream (Sparus auratus). S. auratus shows two major left and right valves consisting of the leaflet and the supporting sinus. Each valvar leaflet can be divided into a stout proximal body and a flap-like distal region. The proximal body is structured into three layers: a luminal fibrosa, a dense cellular core and a parietal fibrosa. The luminal fibrosa is a collagenous structure extending the entire length of the leaflet, while the parietal fibrosa is restricted to the most proximal area. The dense cellular core consists of fibroblastic cells and a matrix rich in glycoconjugates, collagen and elastin.The histochemical and structural data suggest that the luminal fibrosa bears most of the force associated with valvar closure, while the cellular core acts as a cushion dampening vibrations and absorbing the elastic recoil. The sinus wall is a fibrous layer which shows proximal-distal differences in thickness. It also shows compositional differences that can be related to mechanical function. We describe the presence of a fibrous cylinder formed by the sinus wall, the fibrous interleaflet triangles and the fibrous layer that covers the inner surface of the conus myocardium. This fibrous cylinder constitutes the structural nexus between the ventricle, the conus and the bulbus arteriosus, provides support for the conus valves and separates the valvar complex from the surrounding tissues. The structure of the conus valves in S. auratus is different from that found in other vertebrates. Anatomical similarities between the conus valves and the mammalian arterial valves are emphasized. Each phyletic group appears to have developed specific structures in order to perform similar functions.
Cartilaginous deposits are regularly present in the heart of several reptilian, avian, and mammalian species. The formation of these extraskeletal cartilages has been studied in birds and mammals, but not in reptiles. The aim here was to elucidate this question in the Spanish terrapin. Hearts from 23 embryos belonging to Yntema (1968) developmental stages 17 to 26 and eight terrapins age 3 months to 10 years were examined using histological, histochemical, and immunohistochemical techniques. In the heart of the Spanish terrapin (Mauremys leprosa), chondrogenesis can start during embryonic life. Cartilaginous tissue develops from a mesenchymal cellular condensation that extends along the aorticopulmonary septum and the incipient pars fibrosa of the ventricular horizontal septum. This cellular condensation, which is smooth muscle alpha-actin (SMalpha-actin)-negative and type II collagen-negative during stages 17 to 22, acts as a prechondrogenic condensation. In stage 23, production of type II collagen begins in the central core of the condensation and gradually spreads toward its periphery. The type II collagen-positive (chondrogenic) cellular condensation remains devoid of perichondrium prior to birth. Thereafter, it converts into hyaline cartilage that extends along the proximal part of the aorticopulmonary septum and the pars fibrosa of the horizontal septum. Our findings are consistent with the assumption that, as in birds and mammals, the precursors of the cardiac chondrocytes in chelonians are neural crest-derived cells of nonmuscular nature. In addition, they point to the possibility that cells from the neural crest populate the embryonic pars fibrosa of the horizontal septum, thereby contributing to its alignment with the aorticopulmonary septum. In the present species, a second cartilaginous deposit of a hyaline nature extends along the sinus wall of the right semilunar valve of the right aorta, penetrating the fibrous cushion that constitutes the proximal support of the corresponding valve leaflet. This cartilage develops after birth, between the third and eighteenth month of life; its morphogenetic origin is unclear. The cartilaginous foci occurring in hearts of Spanish terrapin appear to act as pivots resisting mechanical tensions generated during the cardiac cycle. In the specimens examined there was no sign of replacement of the cardiac cartilages by bone tissue.
This paper reports on the presence of the conus arteriosus in the heart of the adult gilthead seabream, Sparus auratus (Perciformes, Teleostei). The junctional region between the single ventricle and the bulbus arteriosus has been studied by conventional light microscopy, and by scanning and transmission electron microscopy. In addition, fluorescent phalloidin and antibodies against the muscle myosin heavy chains, laminin and collagen type IV have been used. The conus arteriosus is a distinct muscular segment interposed between the ventricle and the bulbus arteriosus. It is clearly different from the bulbus arteriosus due to its myocardial nature. It can also be distinguished from the ventricular myocardium because: (1) it has a conus shape; (2) it is formed by compact, well-vascularized myocardium; (3) it is surrounded on its inner and outer faces by fibrous layers rich in collagen and elastin; (4) it constitutes the anatomical support of the so-termed conus valves; (5) it shows intense staining for laminin and type-IV collagen; and (6) the myocardial cells located close to the inner fibrous layer are helicoidally arranged. By contrast, the ventricular myocardium is highly trabecular, lacks a compacta, shows no vessels, and presents barely detectable amounts of laminin and collagen type IV. The presence of a distinct conus arteriosus in the heart of an evolutionary advanced teleost species indicates that the conus is not a vestigial segment from the evolutionary or embryological points of view. The characteristic spatial arrangement of the conus myocytes strongly suggests that the conus is implicated in the mechanical performance of the conus valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.