There remains debate regarding the impact of cannabis on neuropsychiatric disorders. Here, we examined the effects of cannabidiol (CBD), a nonpsychoactive constituent of cannabis, on heroin self-administration and drug-seeking behavior using an experimental rat model. CBD (5-20 mg/kg) did not alter stable intake of heroin self-administration, extinction behavior, or drug seeking induced by a heroin prime injection. Instead, it specifically attenuated heroin-seeking behavior reinstated by exposure to a conditioned stimulus cue. CBD had a protracted effect with significance evident after 24 h and even 2 weeks after administration. The behavioral effects were paralleled by neurobiological alterations in the glutamatergic and endocannabinoid systems. Discrete disturbances of AMPA GluR1 and cannabinoid type-1 receptor expression observed in the nucleus accumbens associated with stimulus cue-induced heroin seeking were normalized by CBD treatment. The findings highlight the unique contributions of distinct cannabis constituents to addiction vulnerability and suggest that CBD may be a potential treatment for heroin craving and relapse.
These data suggest that glutamatergic transmission could be involved in the maintenance of cocaine self-administration and in the early phases of abstinence.
Marijuana consumption during adolescence has been proposed to be a stepping-stone for adult cocaine addiction. However, experimental evidence for this hypothesis is missing. In this work we chronically injected male and female Wistar rats with either the cannabinoid agonist CP 55,940 (CP; 0.4 mg/kg) or its corresponding vehicle. Adult acquisition (seven 30 min daily sessions) and maintenance (fourteen 2 h daily sessions) of cocaine self-administration (1 mg/kg), food-reinforced operant learning under conditions of normal (ad libitum access to food), and high motivation (food-restriction schedule) were measured. Additionally, brain metabolic activity was analyzed by means of [ 18 F]-fluorodeoxyglucose positron emission tomography. During the acquisition phase, female CP-treated rats showed a higher rate of cocaine self-administration as compared to vehicle-treated females and males; no differences were found between both male groups. This effect disappeared in the maintenance phase. Moreover, no differences among groups were evident in the food-reinforced operant task, pointing to the cocaine-specific nature of the effect seen in self-administration rather than a general change in reward processing. Basal brain metabolic activity also changed in CP-treated females when compared to their vehicle-treated counterparts with no differences being found in the males; more specifically we observed a hyper activation of the frontal cortex and a hypo activation of the amygdalo-entorhinal cortex. Our results suggest that a chronic exposure to cannabinoids during adolescence alters the susceptibility to acquire cocaine self-administration, in a sex-specific fashion. This increased susceptibility could be related to the changes in brain metabolic activity induced by cannabinoids during adolescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.