The 2dF (Two‐degree Field) facility at the prime focus of the Anglo‐Australian Telescope provides multiple‐object spectroscopy over a 2° field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440 and 110 nm respectively. The 2dF facility began routine observations in 1997.
2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small‐diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re‐configuring can be done in parallel with observing. The robot positioner places one fibre every 6 s, to a precision of 0.3 arcsec (20 μm) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5‐m diameter telescope top end ring for ease of handling and to keep the optical fibres short in order to maximize UV throughput.
There is a pipeline data reduction system which allows each data set to be fully analysed while the next field is being observed.
2dF has achieved its initial astronomical goals. The redshift surveys obtain spectra at the rate of 2500 galaxies per night, yielding a total of about 200 000 objects in the first four years. Typically a B=19 galaxy gives a spectrum with a signal‐to‐noise ratio of better than 10 per pixel in less than an hour; redshifts are derived for about 95 per cent of all galaxies, with 99 per cent reliability or better. Total system throughput is about 5 per cent. The failure rate of the positioner and fibre system is about 1:10 000 moves or once every few nights, and recovery time is usually short.
In this paper we provide the historical background to the 2dF facility, the design philosophy, a full technical description and a summary of the performance of the instrument. We also briefly review its scientific applications and possible future developments.
There remains debate regarding the impact of cannabis on neuropsychiatric disorders. Here, we examined the effects of cannabidiol (CBD), a nonpsychoactive constituent of cannabis, on heroin self-administration and drug-seeking behavior using an experimental rat model. CBD (5-20 mg/kg) did not alter stable intake of heroin self-administration, extinction behavior, or drug seeking induced by a heroin prime injection. Instead, it specifically attenuated heroin-seeking behavior reinstated by exposure to a conditioned stimulus cue. CBD had a protracted effect with significance evident after 24 h and even 2 weeks after administration. The behavioral effects were paralleled by neurobiological alterations in the glutamatergic and endocannabinoid systems. Discrete disturbances of AMPA GluR1 and cannabinoid type-1 receptor expression observed in the nucleus accumbens associated with stimulus cue-induced heroin seeking were normalized by CBD treatment. The findings highlight the unique contributions of distinct cannabis constituents to addiction vulnerability and suggest that CBD may be a potential treatment for heroin craving and relapse.
The growth of neuronal processes depends critically on the function of adhesion proteins that link extracellular ligands to the cytoskeleton. The neuronal adhesion protein L1-CAM serves as a receptor for nerve growth-promoting proteins, a process that is inhibited by the interaction between L1-CAM and the cytoskeleton adaptor ankyrin. Using a novel reporter based on intramolecular bioluminescence resonance energy transfer, we have determined that the MAP kinase pathway regulates the phosphorylation of the FIGQY motif in the adhesion protein L1-CAM and its interaction with ankyrin B. MAP kinase pathway inhibitors block L1-CAM-mediated neuronal growth. However, this blockade is partially rescued by inhibitors of L1-CAM-ankyrin binding. These results demonstrate that the MAP kinase pathway regulates L1-CAMmediated nerve growth by modulating ankyrin binding, suggesting that nerve growth can be regulated at the level of individual receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.