Standardized tools are needed to identify and prioritize the most harmful non-native species (NNS). A plethora of assessment protocols have been developed to evaluate the current and potential impacts of non-native species, but consistency among them has received limited attention. To estimate the consistency across impact assessment protocols, 89 specialists in biological invasions used 11 protocols to screen 57 NNS (2614 assessments). We tested if the consistency in the impact scoring across assessors, quantified as the coefficient of variation (CV), was dependent on the characteristics of the protocol, the taxonomic group and the expertise of the assessor. Mean CV across assessors was 40%, with a maximum of 223%. CV was lower for protocols with a low number of score levels, which demanded high levels of expertise, and when the assessors had greater expertise on the assessed species. The similarity among protocols with respect to the final scores was higher when the protocols considered the same impact types. We conclude that all protocols led to considerable inconsistency among assessors. In order to improve consistency, we highlight the importance of selecting assessors with high expertise, providing clear guidelines and adequate training but also deriving final decisions collaboratively by consensus.
Ground cover management in vineyards in Spain is focused on minimizing soil erosion and compaction. Such practices have influenced the weed community structure in the inter-rows, contributing to the spread of the high noxious weed Cynodon dactylon (L.) Pers. This fact highlights the need for further investigation of the interaction between ground cover practices and weed control techniques. In this study, the effect of four different ground cover managements (M) in the inter-rows on C. dactylon population dynamics (changes in coverage and frequency) was assessed over three seasons (2015–2017): (M1) a no-till spontaneous vegetation ground cover managed by shredding; (M2) a no-till spontaneous vegetation ground cover managed by shredding plus herbicide application, (M3) tilled soil and spontaneous vegetation growing; and (M4) tilled soil and a barley cover crop seeded (Hordeum vulgare L.). Cynodon dactylon and the other weeds responded differently to the various weed control methods. After three seasons, the barley cover crop was the most efficient management system to control C. dactylon and other weeds. Final soil cover in barley cover crop and tilled soil with spontaneous vegetation were 0.5% and 1.1%, respectively, compared to 3.7% and 7.7% obtained by spontaneous vegetation shredded with and without herbicide application, respectively. In addition, total weed frequency varied from 9.7% for barley cover crop to 45.8% for spontaneous vegetation only shredded. Weed community composition changed due to the pressure exerted by each management and the adaptive strategy of the different species. This study highlights the importance of knowledge of how vegetation management influences weed flora to improve the sustainability of wine grape production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.