Increasing evidence indicates that maintenance of neuronal homeostasis involves the activation of the cell cycle machinery in postmitotic neurons. Our recent findings suggest that cell cycle activation is essential for DNA damage-induced neuronal apoptosis. However, whether the cell division cycle also participates in DNA repair and survival of postmitotic, terminally differentiated neurons is unknown. Here, we tested the hypothesis that G(1) phase components contribute to the repair of DNA and are involved in the DNA damage response of postmitotic neurons. In cortical terminally differentiated neurons, treatment with subtoxic concentrations of hydrogen peroxide (H(2)O(2)) caused repairable DNA double strand breaks (DSBs) and the activation of G(1) components of the cell cycle machinery. Importantly, DNA repair was attenuated if cyclin-dependent kinases CDK4 and CDK6, essential elements of G(0) --> G(1) transition, were suppressed. Our data suggest that G(1) cell cycle components are involved in DNA repair and survival of postmitotic neurons.
Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al., 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 ppb and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens.
The cellular process of epithelial-mesenchymal cell transition (EMT) is a critical event in development that is reiterated in adult pathologies of metastasis and organ fibrosis. An initial understanding of the cellular and molecular events of this process emerged from an in vitro examination of heart valve development. Explants of the chick atrioventricular valve-forming region were placed on collagen gels and removed to show that EMT was regulated by a tissue interaction. Subsequent studies showed that specific TGFβ isoforms and receptors were required and steps of activation and invasion could be distinguished. The assay was modified for mouse hearts and has been used to explore signal transduction and gene expression in both species. The principle advantages of the system are a defined temporal window, when EMT takes place and the ability to isolate cells at various stages of the EMT process. These advantages are largely unavailable in other developmental or adult models. As the mesenchymal cells produced by EMT in the heart are involved in defects found in congenital heart disease, there is also a direct relevance of cardiac EMT to human birth defects. This relationship has been explored in relation to environmental exposures and in a number of genetic models. This review provides both an overview of the findings developed from the assay and protocols to enable the use of the assay by other laboratories. The assay provides a versatile platform to explore roles of specific gene products, drugs, and environmental agents on a critical cellular process.
SUMMARYEndothelia in the atrioventricular (AV) canal of the developing heart undergo a prototypical epithelial mesenchymal transition (EMT) to begin heart valve formation. Using an in vitro invasion assay, an extracellular matrix protein, Olfactomedin-1 (OLFM1), was found to increase mesenchymal cell numbers in AV canals from embryonic chick hearts. Treatment with both anti-OLFM1 antibody and siRNA targeting OLFM1 inhibits mesenchymal cell formation. OLFM1 does not alter cell proliferation, migration or apoptosis. Dispersion, but lack of invasion in the presence of inhibiting antibody, identifies a specific role for OLFM1 in cell invasion during EMT. This role is conserved in other epithelia, as OLFM1 similarly enhances invasion by MDCK epithelial cells in a transwell assay. Synergy is observed when TGFβ2 and OLFM1 are added to MDCK cell cultures, indicating that OLFM-1 activity is cooperative with TGFβ. Inhibition of both OLFM1 and TGFβ in heart invasion assays shows a similar cooperative role during development. To explore OLFM1 activity during EMT, representative EMT markers were examined. Effects of OLFM1 protein and anti-OLFM1 on transcripts of cell-cell adhesion molecules and the transcription factors Snail-1, Snail-2, Twist1 and Sox-9 argue that OLFM1 does not initiate EMT. Rather, regulation of transcripts of Zeb1 and Zeb2, secreted proteases and mesenchymal cell markers by both OLFM1 and anti-OLFM1 is consistent with regulation of the cell invasion step of EMT. We conclude that OLFM1 is present and necessary during EMT in the embryonic chick heart. Its role in cell invasion and mesenchymal cell gene regulation suggests an invasion checkpoint in EMT where OLFM1 acts to promote cell invasion into the three-dimensional matrix.
Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5-500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion-related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.