In this Letter, a swept-source optical coherence tomography (SS-OCT) instrument employing an innovative scanning protocol for high-speed volumetric rate imaging is demonstrated. The optical source is a tunable laser based on a supercontinuum source pumped with femtosecond pulses, followed by a time-stretched delay fiber. The instrument is equipped with an ultra-fast lateral scanner, based on a KTN crystal, driven at 100 kHz. The letter proves the utility of combining an ultra-fast lateral scanner with an ultra-fast swept laser to provide A-scans at a repetition rate of 40 MHz and an unprecedented 3D-OCT volume acquisition rate of 400 Hz.
In this report, a swept source optical coherence tomography (SS-OCT) instrument, equipped with a novel, multi-MHz tuning range swept source is presented. The source, based on an electrically pumped Micro Electro Mechanical System Vertical Cavity Surface Emitting Laser (MEMS-VCSEL) technology, is able to operate at 1.6 MHz with bidirectional sweeping, and emits light at a central wavelength of 1060 nm with a wavelength tuning range of 30 nm at -3 dB. The capabilities of the SS are investigated, and characterized, using an OCT instrument equipped with pupil tracking capabilities. The source provides an experimental axial resolution of 30 μm measured in air. From measuring the sensitivity drop-off, an axial imaging range longer than 90 mm was inferred. To estimate the wavenumber tuning non-linearities of the source and generate images, the Complex Master-Slave (CMS) method was employed. CMS also allowed for real-time visualization of the en-face images of the human retina, in-vivo, without computing the whole volume. By using the novel SS, in-vivo real-time images of the human retina are produced at 4 Hz volume rate when paired with a 2-D orthogonal galvanometer scanner. The increase in speed for A-scan and volume acquisition tends to reduce fragmented and blurry images. Apart from a montage of en-face images generated in real-time from various axial positions, we also present Bscans produced with a galvanometer scanner driven at 1 kHz from the optic nerve area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.