Frosty pod rot, caused by Moniliophthora roreri, is the most damaging disease of cacao in Latin America and, to better comprehend its epidemiology, we must understand its dissemination and proliferation. However, we do not know how M. roreri spores loads fluctuate in time and space due to the lack of a reliable technique to quantify M. roreri spores in the fields. Therefore, we developed a method that relies on spore traps and qPCR to detect and quantify M. roreri spore loads. This study demonstrated that the qPCR protocol can detect down to 0.025 ng of M. roreri DNA and quantify between 0.006 ng and 60 ng. Moreover, it demonstrated that qPCR protocol can detect and quantify DNA extracted from spore suspension and spore traps containing at least 2.9 × 104 M. roreri spores. However, the variability of the estimates for spore samples was high. Finally, we described a spore-trap device designed to carry spore traps in the field. The qPCR protocol and spore-trap device here developed will help in the understanding of the M. roreri dissemination patterns since they can be used to assess the environmental loads of M. roreri spore in cacao fields.
One of the main environmental problems we are currently facing is air pollution. Air quality models calculate how much pollution is emitted and dispersed into the atmosphere. This research presents a Computational Fluid Dynamic model using a real urban geometry for the analysis of CO contamination with a three-dimensional model. This method includes a procedure of calculating emissions using different types of vehicles. CO Measurements are obtained from a Wireless Sensor Network to validate the models. The present study analyzes six representative real cases of different traffic situations and climatic conditions plus 3 hypothetical cases in a hotspot area in the city center of Valencia. The results show what influences pollution levels the most is the wind direction, which influences the generation of velocity patterns. In the validation cases, the real wind direction is used and a slight change produces great differences in both velocities and CO concentration. In the hypothetical cases, parallel and perpendicular winds are defined to observe the differences when this ideal situation is applied. In conclusion, the mixing and transport of air pollutants are closely related to the structures of velocity and turbulence that occur in the air, which depends strongly on the wind direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.