One of the main environmental problems we are currently facing is air pollution. Air quality models calculate how much pollution is emitted and dispersed into the atmosphere. This research presents a Computational Fluid Dynamic model using a real urban geometry for the analysis of CO contamination with a three-dimensional model. This method includes a procedure of calculating emissions using different types of vehicles. CO Measurements are obtained from a Wireless Sensor Network to validate the models. The present study analyzes six representative real cases of different traffic situations and climatic conditions plus 3 hypothetical cases in a hotspot area in the city center of Valencia. The results show what influences pollution levels the most is the wind direction, which influences the generation of velocity patterns. In the validation cases, the real wind direction is used and a slight change produces great differences in both velocities and CO concentration. In the hypothetical cases, parallel and perpendicular winds are defined to observe the differences when this ideal situation is applied. In conclusion, the mixing and transport of air pollutants are closely related to the structures of velocity and turbulence that occur in the air, which depends strongly on the wind direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.