To identify Pseudomonas syringae pv. tomato genes involved in pathogenesis, we carried out a screen for Tn5 mutants of P. syringae pv. tomato DC3000 with reduced virulence on Arabidopsis thaliana. Several mutants defining both known and novel virulence loci were identified. Six mutants contained insertions in biosynthetic genes for the phytotoxin coronatine (COR). The P. syringae pv. tomato DC3000 COR genes are chromosomally encoded and are arranged in two separate clusters, which encode enzymes responsible for the synthesis of coronafacic acid (CFA) or coronamic acid (CMA), the two defined intermediates in COR biosynthesis. High-performance liquid chromatography fractionation and exogenous feeding studies confirmed that Tn5 insertions in the cfa and cma genes disrupt CFA and CMA biosynthesis, respectively. All six COR biosynthetic mutants were significantly impaired in their ability to multiply to high levels and to elicit disease symptoms on A. thaliana plants. To assess the relative contributions of CFA, CMA, and COR in virulence, we constructed and characterized cfa6 cmaA double mutant strains. These exhibited virulence phenotypes on A. thalliana identical to those observed for the cmaA or cfa6 single mutants, suggesting that reduced virulence of these mutants on A. thaliana is caused by the absence of the intact COR toxin. This is the first study to use biochemically and genetically defined COR mutants to address the role of COR in pathogenesis.
SummaryAlginate, a co-polymer of O-acetylated b-1,4-linked D-mannuronic acid and L-guluronic acid, has been reported to function in the virulence of Pseudomonas syringae, although genetic studies to test this hypothesis have not been undertaken previously. In the present study, we used a genetic approach to evaluate the role of alginate in the pathogenicity of P. syringae pv. syringae 3525, which causes bacterial brown spot on beans. Alginate biosynthesis in strain 3525 was disrupted by recombining Tn5 into algL, which encodes alginate lyase, resulting in 3525.L. Alginate production in 3525.L was restored by the introduction of pSK2 or pAD4033, which contain the alginate biosynthetic gene cluster from P. syringae pv. syringae FF5 or the algA gene from P. aeruginosa respectively. The role of alginate in the epiphytic ®tness of strain 3525 was assessed by monitoring the populations of 3525 and 3525.L on tomato, which is not a host for this pathogen. The mutant 3525.L was signi®cantly impaired in its ability to colonize tomato leaves compared with 3525, indicating that alginate functions in the survival of strain 3525 on leaf surfaces. The contribution of alginate to the virulence of strain 3525 was evaluated by comparing the population dynamics and symptom development of 3525 and 3525.L in bean leaves. Although 3525.L retained the ability to form lesions on bean leaves, symptoms were less severe, and the population was signi®cantly reduced in comparison with 3525. These results indicate that alginate contributes to the virulence of P. syringae pv. syringae 3525, perhaps by facilitating colonization or dissemination of the bacterium in planta.
Biosynthesis of the phytotoxin coronatine (COR) in Pseudomonas syringae pv. glycinea PG4180 is regulated by temperature at the transcriptional level. A 3.4-kb DNA fragment from the COR biosynthetic gene cluster restored temperature-regulated phytotoxin production to Tn5 mutants defective in COR production. Nucleotide sequence analysis of this fragment revealed three genes, corS, corP, and corR, which encode a modified two-component regulatory system consisting of one sensor protein, CorS, and two response regulator proteins, CorP and CorR. Although only one response regulator, CorR, had a DNA-binding domain, the phosphatereceiving domains of both response regulator proteins were highly conserved. Transcriptional fusions of the corP and corR promoters to a promoterless glucuronidase gene (uidA) indicated that these two genes are expressed constitutively at 18 and 28؇C. In contrast, a corS::uidA fusion exhibited the temperature dependence previously observed for COR biosynthetic promoters and exhibited maximal transcriptional activity at 18؇C and low activity at 28؇C. Furthermore, glucuronidase activity for corS::uidA was decreased in corP, corR, and corS mutants relative to the levels observed for PG4180(corS::uidA). This difference was not observed for corP::uidA and corR::uidA transcriptional fusions since expression of these fusions remained low and constitutive regardless of the genetic background. The three regulatory genes functioned in a P. syringae strain lacking the COR gene cluster to achieve temperature-dependent activation of an introduced COR biosynthetic promoter, indicating that this triad of genes is the primary control for COR biosynthesis and responsible for thermoregulation. Our data suggest that the modified two-component regulatory system described in this study might transduce and amplify a temperature signal which results in transcriptional activation of COR biosynthetic genes.
Alginate, a copolymer of D-mannuronic acid and L-guluronic acid, is produced by a variety of pseudomonads, including Pseudomonas syringae. Alginate biosynthesis has been most extensively studied in P. aeruginosa, and a number of structural and regulatory genes from this species have been cloned and characterized. In the present study, an alginate-defective (Alg ؊ ) mutant of P. syringae pv. syringae FF5 was shown to contain a Tn5 insertion in algL, a gene encoding alginate lyase. A cosmid clone designated pSK2 restored alginate production to the algL mutant and was shown to contain homologs of algD, alg8, alg44, algG, algX (alg60), algL, algF, and algA. The order and arrangement of the structural gene cluster were virtually identical to those previously described for P. aeruginosa. Complementation analyses, however, indicated that the structural gene clusters in P. aeruginosa and P. syringae were not functionally interchangeable when expressed from their native promoters. A region upstream of the algD gene in P. syringae pv. syringae was shown to activate the transcription of a promoterless glucuronidase (uidA) gene and indicated that transcription initiated upstream of algD as described for P. aeruginosa. Transcription of the algD promoter from P. syringae FF5 was significantly higher at 32°C than at 18 or 26°C and was stimulated when copper sulfate or sodium chloride was added to the medium. Alginate gene expression was also stimulated by the addition of the nonionic solute sorbitol, indicating that osmolarity is a signal for algD expression in P. syringae FF5.The phytopathogenic bacterium Pseudomonas syringae produces two well-characterized extracellular polysaccharide (EPS) molecules: levan, a polymer of fructofuranan, and alginate, a copolymer of O-acetylated -1,4-linked D-mannuronic acid and its C-5 epimer, L-guluronic acid (21, 29). Possible roles for the EPS molecules produced by P. syringae are varied and include avoidance of host plant cell recognition, resistance of bacterial cells to desiccation, and enhancement of epiphytic fitness (33, 41). Furthermore, alginate has been implicated in a symptom known as water soaking, where the intercellular tissues of infected plants become filled with water (20, 29). However, a role for alginate in the symptomology or virulence of P. syringae has not been proven.Alginate biosynthesis has been extensively studied in Pseudomonas aeruginosa, where it functions as a major virulence factor in strains infecting the lungs of cystic fibrosis patients (56). In P. aeruginosa, genes that encode the biosynthesis and regulation of alginate map to four chromosomal locations. With the exception of algC, which is located at 10 min, most of the structural genes are located at 34 min. The regulatory genes map at 10 and 13 min, and the loci responsible for the genotypic switch to alginate production are located at 68 min (46). Most of the structural genes for alginate biosynthesis are clustered within an 18-kb region in the P. aeruginosa chromosome (16). Structural genes that have...
The phytotoxin coronatine (COR) is produced by various pathovars of Pseudomonas syringae, including P. syringae pv. tomato DC3000, which is pathogenic on crucifers and tomato, and P. syringae pv. glycinea PG4180, a soybean pathogen. The COR molecule contains two distinct components, coronafacic acid (CFA) and coronamic acid (CMA), which are intermediates in the COR biosynthetic pathway. In P. syringae pv. tomato DC3000, it is not clear whether corR, which encodes a response regulator, positively regulates CFA and CMA synthesis as it does in P. syringae pv. glycinea PG4180. In this study, a corR mutant of P. syringae pv. tomato DC3000 was constructed and was shown to be defective in the production of COR, CFA, and CMA. Furthermore, disease severity was greatly reduced in tomato plants inoculated with the corR mutant compared with wild-type P. syringae pv. tomato DC3000. We also showed that a mutation in hrpL, which encodes an alternate RNA polymerase sigma factor (sigmaL) required for the expression of genes encoding components of the type III secretion system, abrogated production of COR in P. syringae pv. tomato DC3000. The presence of a potential hrp box, the recognition site for sigmaL, upstream of corR suggested that corR might be regulated by hrpL. This was confirmed in reverse-transcription polymerase chain reaction experiments showing that the upstream effector gene holPtoAA, which was associated with the hrp box, was cotranscribed with corR. Furthermore, studies also were conducted to investigate whether mutations in corR had effects on the expression of hrpL. The corR mutant of P. syringae pv. tomato DC3000 showed both a reduction and delay in the expression of hrpL and was impaired in its ability to elicit a hypersensitive response on Nicotiana benthamiana. A putative CorR-binding site was identified upstream of hrpL, and gel shift studies confirmed the binding of CorR to this region. These results indicate that corR directly impacts the expression of the hrp regulon in P. syringae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.