High-Performance Computing systems rely on the software’s capability to be highly parallelized in individual computing tasks. However, even with a high parallelization level, poor scheduling can lead to long runtimes; this scheduling is in itself an NP-hard problem. Therefore, it is our interest to use a heuristic approach, particularly Cellular Processing Algorithms (CPA), which is a novel metaheuristic framework for optimization. This framework has its foundation in exploring the search space by multiple Processing Cells that communicate to exploit the search and in the individual stagnation detection mechanism in the Processing Cells. In this paper, we proposed using a Greedy Randomized Adaptive Search Procedure (GRASP) to look for promising task execution orders; later, a CPA formed with Iterated Local Search (ILS) Processing Cells is used for the optimization. We assess our approach with a high-performance ILS state-of-the-art approach. Experimental results show that the CPA outperforms the previous ILS in real applications and synthetic instances.
The number of research papers interested in studying the social dimension of supply chain sustainability and resilience is increasing in the literature. However, the social dimension is complex, with several uncertainty variables that cannot be expressed with a traditional Boolean logic of totally true or false. To cope with uncertainty, Fuzzy Logic allows the development of models to obtain crisp values from the concept of fuzzy linguistic variables. Using the Structural Equation Model by Partial Least Squares (SEM-PLS) and Evolutionary Fuzzy Knowledge, this research aims to analyze the predictive power of social sustainability characteristics on supply chain resilience performance in the context of the COVID-19 pandemic with representative cases from Mexico and Chile. We validate our approach using the Chile database for training our model and the Mexico database for testing. The fuzzy knowledge database has a predictive power of more than 80%, using social sustainability features as inputs regarding supply chain resilience in the context of the COVID-19 pandemic disruption. To our knowledge, no works in the literature use fuzzy evolutionary knowledge to study social sustainability in correlation with resilience. Moreover, our proposed approach is the only one that does not require a priori expert knowledge or a systematic mathematical setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.