High-Performance Computing systems rely on the software’s capability to be highly parallelized in individual computing tasks. However, even with a high parallelization level, poor scheduling can lead to long runtimes; this scheduling is in itself an NP-hard problem. Therefore, it is our interest to use a heuristic approach, particularly Cellular Processing Algorithms (CPA), which is a novel metaheuristic framework for optimization. This framework has its foundation in exploring the search space by multiple Processing Cells that communicate to exploit the search and in the individual stagnation detection mechanism in the Processing Cells. In this paper, we proposed using a Greedy Randomized Adaptive Search Procedure (GRASP) to look for promising task execution orders; later, a CPA formed with Iterated Local Search (ILS) Processing Cells is used for the optimization. We assess our approach with a high-performance ILS state-of-the-art approach. Experimental results show that the CPA outperforms the previous ILS in real applications and synthetic instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.