We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (lambda{1}/xi{1}<1/sqrt[2]) and type-2 (lambda{2}/xi{2}>1/sqrt[2]) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamerlike vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.
We demonstrate circular dichroism (CD) in the second harmonic generation (SHG) signal from chiral assemblies of G-shaped nanostructures made of gold. The arrangement of the G shapes is crucial since upon reordering them the SHG-CD effect disappears. Microscopy reveals SHG "hotspots" assemblies, which originate in enantiomerically sensitive plasmon modes, having the novel property of exhibiting a chiral geometry themselves in relation with the handedness of the material. These results open new frontiers in studying chirality.
Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.
Abstract. The theoretical and experimental results concerning the thermodynamical and low-frequency transport properties of hybrid structures, consisting of spatially-separated conventional low-temperature superconductor (S) and ferromagnet (F), is reviewed. Since the superconducting and ferromagnetic parts are assumed to be electrically insulated, no proximity effect is present and thus the interaction between both subsystems is through their respective magnetic stray fields. Depending on the temperature range and the value of the external field Hext, different behavior of such S/F hybrids is anticipated. Rather close to the superconducting phase transition line, when the superconducting state is only weakly developed, the magnetization of the ferromagnet is solely determined by the magnetic history of the system and it is not influenced by the field generated by the supercurrents. In contrast to that, the nonuniform magnetic field pattern, induced by the ferromagnet, strongly affect the nucleation of superconductivity leading to an exotic dependence of the critical temperature Tc on Hext. Deeper in the superconducting state the effect of the screening currents cannot be neglected anymore. In this region of the phase diagram various aspects of the interaction between vortices and magnetic inhomogeneities are discussed. In the last section we briefly summarize the physics of S/F hybrids when the magnetization of the ferromagnet is no longer fixed but can change under the influence of the superconducting currents. As a consequence, the superconductor and ferromagnet become truly coupled and the equilibrium configuration of this "soft" S/F hybrids requires rearrangements of both, superconducting and ferromagnetic characteristics, as compared with "hard" S/F structures. Some figures in this paper are in color only in the electronic version.
The guidance of human sperm cells under confinement in quasi 2D microchambers is investigated using a purely physical method to control their distribution. Transport property measurements and simulations are performed with dilute sperm populations, for which effects of geometrical guidance and concentration are studied in detail. In particular, a trapping transition at convex angular wall features is identified and analyzed. We also show that highly efficient microratchets can be fabricated by using curved asymmetric obstacles to take advantage of the spermatozoa specific swimming strategy.PACS numbers: 87.17. Jj, 87.18.Hf, 87.17.Aa, 87.17.Rt Understanding sperm dynamics under confining microgeometries is a general problem and a major challenge both from the basic biophysics and the complex fluids points of view. It is also crucial for microfluidics and biomedical control applications. Our knowledge of the swimming cell motilities in unbounded media cannot be directly extrapolated to their behavior in complex environments such as those found in the oviduct or in the labon-a-chip microfluidic devices used to control and analyze small samples or for in-vitro reproduction procedures. In these cases, the characteristic length scales are of the same order as the cell size, i.e. a few micrometers. Under these circumstances, confined self-propelled microorganisms undergo substantial changes in their locomotion habits, adapting their dynamics to intricate porous media or to solid surfaces vicinity [1], reducing their speed close to boundaries [2] or adjusting their morphology and motility in very narrow channels [3].It has been shown that microswimmers with very different propulsion systems are similarly attracted to the walls and to swim parallel to the surface [2,[4][5][6][7][8][9][10][11]. It is believed that this attractive force has hydrodynamic origin although other possible mechanisms have been proposed [12][13][14]. Several models have been introduced to describe the swimming along surfaces (see Ref.[15] and references therein). Interestingly, the direct observation of the cell-wall attraction (see Fig. 1) have led to the design of ratchet devices that guide and sort self-propelled cells using asymmetric obstacles [16,17]. In particular, different microfluidic devices have been created to either increase sperm cell quality or enhance their concentration [18][19][20]. The creation of inhomogeneous distributions of swimmer populations via asymmetric obstacles has been shown to be particularly efficient for run-and-tumble bacteria [16,[21][22][23]. Alternative ways of achieving nonuniform distributions have also been obtained combining symmetric funnels and flux [24]. Nowadays, numerous theoretical treatments are available to account for the effects of asymmetric obstacles on active particles distributions [25][26][27][28]. Tumbles, rotational diffusion and collisions are efficient mechanisms for separating the cells from the surface, thus permitting bacteria to be reinserted into the bulk of the confining micro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.