In the last decades, new types of generation technologies have emerged and have been gradually integrated into the existing power systems, moving their classical architectures to distributed systems. Despite the positive features associated to this paradigm, new problems arise such as coordination and uncertainty. In this framework, microgrids constitute an effective solution to deal with the coordination and operation of these distributed energy resources. This paper proposes a Genetic Algorithm (GA) to address the combined problem of Unit Commitment (UC) and Economic Dispatch (ED). With this end, a model of a microgrid is introduced together with all the control variables and physical constraints. To optimally operate the microgrid, three operation modes are introduced. The first two attend to optimize economical and environmental factors, while the last operation mode considers the errors induced by the uncertainties in the demand forecasting. Therefore, it achieves a robust design that guarantees the power supply for different confidence levels. Finally, the algorithm was applied to an example scenario to illustrate its performance. The achieved simulation results demonstrate the validity of the proposed approach.
Micro Hydro Power Plants (MHPP) constitute an effective, environmentally-friendly solution to deal with energy poverty in rural isolated areas, being the most extended renewable technology in this field. Nevertheless, the context of poverty and lack of qualified manpower usually lead to a poor usage of the resources, due to the use of thumb rules and user experience to design the layout of the plants, which conditions the performance. For this reason, the development of robust and efficient optimization strategies are particularly relevant in this field. This paper proposes a Genetic Algorithm (GA) to address the problem of finding the optimal layout for an MHPP based on real scenario data, obtained by means of a set of experimental topographic measurements. With this end in view, a model of the plant is first developed, in terms of which the optimization problem is formulated with the constraints of minimal generated power and maximum use of flow, together with the practical feasibility of the layout to the measured terrain. The problem is formulated in both single-objective (minimization of the cost) and multi-objective (minimization of the cost and maximization of the generated power) modes, the Pareto dominance being studied in this last case. The algorithm is first applied to an example scenario to illustrate its performance and compared with a reference Branch and Bound Algorithm (BBA) linear approach, reaching reductions of more than 70% in the cost of the MHPP. Finally, it is also applied to a real set of geographical data to validate its robustness against irregular, poorly sampled domains.
Data processing in sports is a phenomenon increasingly present at all levels, from professionals in search of tools to improve their performance to beginners motivated by the quantification of their physical activity. In this work, a comparison between some of the main machine learning and deep learning algorithms is carried out in order to classify padel tennis strokes. Up to 13 representative padel tennis strokes are classified. Before a classification of padel tennis strokes is performed, a sufficiently representative data set is needed that collects numerous examples of the performance of these strokes. Since there was no similar data set in the literature, we proceeded to the creation of such a data set, for which we developed a data collection system based on an electronic device with an inertial measurement unit. Using the developed data set, the machine learning and deep learning algorithms were hyperparameterized to compare their performance under the best possible configurations. The algorithms were fed with both the temporal series of the acceleration and speed of the six degrees of freedom and also with feature engineering input, consisting in calculating the mean, maximum, and minimum values for each axis. The algorithms evaluated are: fully connected or dense neural networks, 1D convolutional neural networks, decision tree, K nearest neighbors, support vector machines, and eigenvalue classification. According to the results achieved, the best algorithm is the 1D convolutional neural network with temporal series input that achieves an accuracy higher than 93%. However, other simpler algorithms such as dense networks and support vector machines achieve similar results.
Todos los derechos reservados. De conformidad con lo dispuesto en la legislación vigente, podrán ser cas�gados con penas de multa y privación de libertad quienes reproduzcan o plagien, en todo o en parte, una obra literaria, ar�s�ca o cien�fica, fijada en cualquier �po y soporte, sin la precep�va autorización. JA2017 Prefacio Prefacio Las Jornadas de Automática se celebran desde hace 40 años en una universidad nacional facilitando el encuentro entre expertos en estaárea en un foro que permite la puesta en común de las nuevas ideas y proyectos en desarrollo. Al mismo tiempo, propician la siempre necesaria colaboración entre investigadores delámbito de la Ingeniería de Control y Automática, así como de campos afines, a la hora de abordar complejos proyectos de investigación multidisciplinares. En esta ocasión, las Jornadas estarán organizadas por la Universidad de Oviedo y se han celebrado del 6 al 8 de septiembre de
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.