Networks have remained a challenge for information visualization designers because of the complex issues of node and link layout coupled with the rich set of tasks that users present. This paper offers a strategy based on two principles: (1) layouts are based on user-defined semantic substrates, which are non-overlapping regions in which node placement is based on node attributes, (2) users interactively adjust sliders to control link visibility to limit clutter and thus ensure comprehensibility of source and destination. Scalability is further facilitated by user control of which nodes are visible. We illustrate our semantic substrates approach as implemented in NVSS 1.0 with legal precedent data for up to 1122 court cases in three regions with 7645 legal citations.
The need for pattern discovery in long time series data led researchers to develop algorithms for similarity search. Most of the literature about time series focuses on algorithms that index time series and bring the data into the main storage, thus providing fast information retrieval on large time series. This paper reviews the state of the art in visualizing time series, and focuses on techniques that enable users to interactively query time series. Then it presents TimeSearcher 2, a tool that enables users to explore multidimensional data using coordinated tables and graphs with overview+detail, filter the time series data to reduce the scope of the search, select an existing pattern to find similar occurrences, and interactively adjust similarity parameters to narrow the result set. This tool is an extension of previous work, TimeSearcher 1, which uses graphical timeboxes to interactively query time series data.
A semantic substrate is a spatial template for a network, where nodes are grouped into regions and laid out within each region according to one or more node attributes. This paper shows how users can be given control in designing their own substrates and how this ability leads to a different approach to network data exploration. Users can create a semantic substrate, enter their data, get feedback from domain experts, edit the semantic substrate, and iteratively continue this procedure until the domain experts are satisfied with the insights they have gained. We illustrate this process in two case studies with domain experts working with legal precedents and food webs. Guidelines for designing substrates are provided, including how to locate, size, and align regions in a substrate, which attributes to choose for grouping nodes into regions, how to select placement methods and which attributes to set as parameters of the selected placement method. Throughout the paper, examples are illustrated with NVSS 2.0, the network visualization tool developed to explore the semantic substrate idea.
Abstract. Visualizing time series data is useful to support discovery of relations and patterns in financial, genomic, medical and other applications. In most time series, measurements are equally spaced over time. This paper discusses the challenges for unevenly-spaced time series data and presents four methods to represent them: sampled events, aggregated sampled events, event index and interleaved event index. We developed these methods while studying eBay auction data with TimeSearcher. We describe the advantages, disadvantages, choices for algorithms and parameters, and compare the different methods. Since each method has its advantages, this paper provides guidance for choosing the right combination of methods, algorithms, and parameters to solve a given problem for unevenly-spaced time series. Interaction issues such as screen resolution, response time for dynamic queries, and meaning of the visual display are governed by these decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.