Audiological testing, interviews and exposure measurements were used to collect data on the health effects of styrene exposures in 313 workers from fiberglass and metal-product manufacturing plants and a mail terminal. The audiological test battery included pure-tone audiometry, distortion product otoacoustic emissions (DPOAE), psychoacoustic modulation transfer function, interrupted speech, speech recognition in noise and cortical response audiometry (CRA). Workers exposed to noise and styrene had significantly poorer pure-tone thresholds in the high-frequency range (3 to 8 kHz) than the controls, noise-exposed workers and those listed in a Swedish age-specific database. Even though abnormalities were noted on DPOAE and CRA testing, the interrupted speech and speech recognition in noise tests were the more sensitive tests for styrene effects. Further research is needed on the underlying mechanisms to understand the effects of styrene and on audiological test batteries to detect changes in populations exposed to solvents.
Given the links between motion and temporal thinking, it is surprising that no studies have examined the possibility that transporting participants back mentally towards the time of encoding could improve memory. Six experiments investigated whether backward motion would promote recall relative to forward motion or no-motion conditions. Participants saw a video of a staged crime (Experiments 1, 3 and 5), a word list (Experiments 2 and 4) or a set of pictures (Experiment 6). Then, they walked forward or backwards (Experiments 1 and 2), watched a forward-or backward-directed optic flow-inducing video (Experiments 3 and 4) or imagined walking forward or backwards (Experiments 5 and 6). Finally, they answered questions about the video or recalled words or pictures. The results demonstrated for the first time that motion-induced past-directed mental time travel improved mnemonic performance for different types of information. We briefly discuss theoretical and practical implications of this "mnemonic time-travel effect".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.