The state of the art terahertz-frequency quantum cascade lasers have opened a plethora of applications over the past two decades by testing several designs up to the very limit of operating temperature, optical power and lasing frequency performance. The temperature degradation mechanisms have long been under the debate for limiting the operation up to 210 K in pulsed operation in the GaAs/AlGaAs material system. In this work, we review the existing designs and exploit two main temperature degradation mechanisms by presenting a design in which they both prove beneficial to the lasing operation by dual pumping and dual extracting lasing levels. We have applied the density matrix transport model to select potential candidate structures by simulating over two million active region designs. We present several designs which offer better performance than the current record structure.
The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the potential for highfrequency modulation. However, conventional electronic modulation is limited fundamentally by parasitic device impedance, and so alternative physical processes must be exploited to modulate the QCL gain on ultrafast timescales. Here, we demonstrate an alternative mechanism to modulate the emission from a QCL device, whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude, to a maximum modulation depth of 6% in our experiment. We show that this modulation can be explained using perturbation theory analysis. While the modulation rise-time was limited tõ 800 ps by our measurement system, theoretical considerations suggest considerably faster modulation could be possible.
We provide the first experimental evidence of transient instabilities (TIs) in a terahertz (THz) quantum cascade laser (QCL) under optical feedback, in contrast to the widely accepted claim that THz QCLs are ultra-stable against feedback. The TIs appear as periodic oscillations in emitted power or terminal voltage of the laser with an increasing oscillation frequency as feedback increases. The absence of relaxation oscillations and low linewidth enhancement factor in THz QCLs makes them a platform uniquely suitable for exploring external cavity related dynamics in semiconductor lasers. This work opens a pathway to a new THz sensing and imaging modality based on these TIs, which has much reduced complexity compared to existing approaches using laser feedback interferometry.
In this work, we present a density-matrix model, which considers an infinite quantum cascade laser (QCL) and models transport via a nearest neighbor approximation. We will discuss derivation of output parameters of the model in detail and show the direct mathematical link to the semiclassical rate equation approach. This model can be extended to an arbitrary number of states in the QCL period, without a priori specification of upper and lower lasing level. Application of the model to various QCL structures is possible, including bound-to-continuum structures, which typically employ a large number of states per period. The model has been applied to a 2-THz bound-to-continuum QCL, and a very good agreement with measured V-I characteristics is obtained along with qualitative agreement with measured L-I characteristics in terms of dynamic range.
The typical modal characteristics arising during laser feedback interferometry (LFI) in multi-mode terahertz (THz) quantum cascade lasers (QCLs) are investigated in this work. To this end, a set of multi-mode reduced rate equations with gain saturation for a general Fabry-Pérot multi-mode THz QCL under optical feedback is developed. Depending on gain bandwidth of the laser and optical feedback level, three different operating regimes are identified, namely a single-mode regime, a multi-mode regime, and a tuneable-mode regime. When the laser operates in the single-mode and multi-mode regimes, the self-mixing signal amplitude (peak to peak value of the self-mixing fringes) is proportional to the feedback coupling rate at each mode frequency. However, this rule no longer holds when the laser enters into the tuneable-mode regime, in which the feedback level becomes sufficiently strong (the boundary value of the feedback level depends on the gain bandwidth). The mapping of the identified feedback regimes of the multi-mode THz QCL in the space of the gain bandwidth and feedback level is investigated. In addition, the dependence of the aforementioned mapping of these three regimes on the linewidth enhancement factor of the laser is also explored, which provides a systematic picture of the potential of LFI in multi-mode THz QCLs for spectroscopic sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.