Abstract:The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser. References and links 1. B. Hu and M. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716Lett. 20, -1718Lett. 20, (1995 36, 2587-2589 (2011). 29. S. Donati, "Developing self-mixing interferometry for instrumentation and measurements," Laser Photon. Rev. 6, 393-417 (2012
Self-mixing laser sensors show promise for a wide range of sensing applications, including displacement, velocimetry, and fluid flow measurements. Several techniques have been developed to simulate self-mixing signals; however, a complete and succinct process for synthesizing self-mixing signals has so far been absent in the open literature. This article provides a systematic numerical approach for the analysis of self-mixing sensors using the steady-state solution to the Lang and Kobayashi model. Examples are given to show how this method can be used to synthesize self-mixing signals for arbitrary feedback levels and for displacement, distance, and velocity measurement. We examine these applications with a deterministic stimulus and discuss the velocity measurement of a rough surface, which necessitates the inclusion of a random stimulus.
International audienceThe need to accurately measure flow profiles in microfluidic channels is well recognised. In this work, we present a new optical feedback interferometry (OFI) flow sensor that accurately measures local velocity in fluids and enables reconstruction of a velocity profile inside a microchannel. OFI is a self-aligned interferometric technique that uses the laser as both the transmitter and the receiver thus offering high sensitivity, fast response, and a simple and compact optical design. The system described here is based on a commercial semiconductor laser and has been designed to achieve a micrometer-range spatial resolution. The sensor performance was validated by reconstructing the velocity profile inside a circular cross-section flow-channel with 320 µm internal diameter, with a relative error smaller than 1.8 %. The local flow velocity is directly measured, thus avoiding the need for model based profile calculation and uncertainties inherent to this approach. The system was validated by successfully extracting the flow profiles in both Newtonian and shear-thinning liquids
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.