The paper presents the currently developed framework for analysis of accessibility in digital and e-Learning systems, which extends the subject-object relation by including robots in the interaction process. A mainstream experimental framework in special educationfalse-belief task -is analyzed from a Piagetian perspective and modified to account for the intermediate role of the robot in supporting the learner acquire new knowledge or access the digital and e-Learning information available in the World. The paper concludes with some ideas for future research.
The paper presents a linear control system framework for design of technology-based games for pedagogical rehabilitation of children with special learning needs as a central component of the proposed cyber-physical system for inclusive education. The novelty is in explicitly addressing the issue of quantitatively estimating the improvement of games in the desired direction during the design process. An advantage of the proposed approach is its applicability to small groups of children playing diverse sets of games without loss of generalisability of the linear system's model assumptions. Statistically justified experimental results are reported as providing support to the main hypotheses of the present study.
The purpose of this work is to investigate the possibilities of climbing higher obstacles while maintaining the overall dimensions of a walking robot through design improvements and experiments. An original concept for the design of a walking robot with a minimum number of motors is presented. Geometric and force constraints for overcoming an obstacle and the conditions for maintaining static stability are determined. Experiments for overcoming a vertical obstacle are conducted with a 3D printed model. The 3D printed robot feet with different shapes and materials are used. The results of the experiments are presented graphically as a percentage of success against a baseline model. In this study, a dimensionless index to compare the height of the overcome obstacle and the dimensions of the robot is introduced. It allows to objectively compare the possibilities of overcoming obstacles between various types of mobile robots. Conclusions and guidelines for design improvements are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.