Moth's eye inspired multiscale ommatidial arrays offer multifunctional properties of great significance in optoelectronic devices. However, a major challenge remains in fabricating these arrays on large-area substrates using a simple and scalable technique. Here we present the fabrication of these multiscale ommatidial arrays over large areas by a distinct approach called sacrificial layer mediated nanoimprinting, which involves nanoimprinting aided by a sacrificial layer. The fabricated arrays exhibited excellent pattern uniformity over the entire patterned area. Optimum dimensions of the multiscale ommatidial arrays determined by the finite-difference time domain simulations served as the design parameters for replicating the arrays on glass. A broadband suppression of reflectance to a minimum of ∼1.4% and omnidirectional antireflection for highly oblique angles of incidence up to 70° were achieved. In addition, superhydrophobicity and superior antifogging characteristics enabled the retention of optical properties even in wet and humid conditions, suggesting reliable optical performance in practical outdoor conditions. We anticipate that these properties could potentially enhance the performance of optoelectronic devices and minimize the influence of in-service conditions. Additionally, as our technique is solely nanoimprinting-based, it may enable scalable and high-throughput fabrication of multiscale ommatidial arrays.
Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.
An optically transparent slippery surface was fabricated from a blend of Perfluoropolyether and (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane by electrospraying and subsequent low temperature curing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.