ABSTRACT:Significant efforts are invested by rescue agencies worldwide to save human lives during natural and man-made emergency situations including those that happen in wilderness locations. These emergency situations include but not limited to: accidents with alpinists, mountainous skiers, people hiking and lost in remote areas. Sometimes in a rescue operation hundreds of first responders are involved to save a single human life. There are two critical issues where geospatial imaging can be a very useful asset in rescue operations support: 1) human detection and 2) confirming a fact that detected a human being is alive. International group of researchers from the Unites States and Poland collaborated on a pilot research project devoted to identify a feasibility of use for the human detection and alive-human state confirmation small unmanned aerial vehicles (SUAVs) and inexpensive forward looking infrared (FLIR) sensors. Equipment price for both research teams was below $8,000 including 3DR quadrotor UAV and Lepton longwave infrared (LWIR) imager which costs around $250 (for the US team); DJI Inspire 1 UAS with commercial Tamarisc-320 thermal camera (for the Polish team). Specifically both collaborating groups performed independent experiments in the USA and Poland and shared imaging data of on the ground and airborne electro-optical and FLIR sensor imaging collected. In these experiments dead bodies were emulated by use of medical training dummies. Real humans were placed nearby as live human subjects. Electro-optical imagery was used for the research in optimal human detection algorithms. Furthermore, given the fact that a dead human body after several hours has a temperature of the surrounding environment our experiments were challenged by the SUAS data optimization, i.e., distance from SUAV to object so that the FLIR sensor is still capable to distinguish temperature differences between a dummy and a real human. Our experiments indicated feasibility of use SUAVs and small thermal sensors for the human detection scenarios described above. Differences in temperatures were collected by deployed imaging acquisition platform are interpretable on FLIR images visually. Moreover, we applied ENVI image processing functions for calibration and numerical estimations of such a temperature differences. There are more potential system functionalities such as voice messages from rescue teams and even distant medication delivery for the victims of described emergencies. This paper describes experiments, processing results, and future research in more details.
The municipal authorities are responsible for carrying out relevant, objective analysis of areas for revitalization, identifying problems and barriers, diagnosis of the causes and determiningthe appropriate range of activities. From the point of view of urban regeneration one of the key issues is to obtain timely and reliable geospatial data. The article presents the possibility of using digital images obtained from the UAV platform to support the urban regeneration process. As part of the research work involving an inventory of urban space one made photogrametry flights with UAVs DJI Inspire One. Data processing software that was used is Pix4D and QGIS. The results allow the conclusion that the use of UAV in the process of obtaining imaging geoinformation and spatial data for planning and documentation of revitalisation work may be practical mode near-real-time. It replaces the previously used laborious and lengthy process to update data while ensuring their detail and accuracy.
ABSTRACT:Significant efforts are invested by rescue agencies worldwide to save human lives during natural and man-made emergency situations including those that happen in wilderness locations. These emergency situations include but not limited to: accidents with alpinists, mountainous skiers, people hiking and lost in remote areas. Sometimes in a rescue operation hundreds of first responders are involved to save a single human life. There are two critical issues where geospatial imaging can be a very useful asset in rescue operations support: 1) human detection and 2) confirming a fact that detected a human being is alive. International group of researchers from the Unites States and Poland collaborated on a pilot research project devoted to identify a feasibility of use for the human detection and alive-human state confirmation small unmanned aerial vehicles (SUAVs) and inexpensive forward looking infrared (FLIR) sensors. Equipment price for both research teams was below $8,000 including 3DR quadrotor UAV and Lepton longwave infrared (LWIR) imager which costs around $250 (for the US team); DJI Inspire 1 UAS with commercial Tamarisc-320 thermal camera (for the Polish team). Specifically both collaborating groups performed independent experiments in the USA and Poland and shared imaging data of on the ground and airborne electro-optical and FLIR sensor imaging collected. In these experiments dead bodies were emulated by use of medical training dummies. Real humans were placed nearby as live human subjects. Electro-optical imagery was used for the research in optimal human detection algorithms. Furthermore, given the fact that a dead human body after several hours has a temperature of the surrounding environment our experiments were challenged by the SUAS data optimization, i.e., distance from SUAV to object so that the FLIR sensor is still capable to distinguish temperature differences between a dummy and a real human. Our experiments indicated feasibility of use SUAVs and small thermal sensors for the human detection scenarios described above. Differences in temperatures were collected by deployed imaging acquisition platform are interpretable on FLIR images visually. Moreover, we applied ENVI image processing functions for calibration and numerical estimations of such a temperature differences. There are more potential system functionalities such as voice messages from rescue teams and even distant medication delivery for the victims of described emergencies. This paper describes experiments, processing results, and future research in more details.
Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns’ Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.
Streszczenie. Ukształtowanie rzeźby terenu ma podstawowy wpływ na zjawiska przyrodnicze zachodzące na powierzchni Ziemi. Dyrektywa 2000/60/WE (Ramowa Dyrektywa Wodna) Parlamentu Europejskiego i Rady Europy (23.10.2000) nakazuje wprowadzenie obowiązku zrównoważonego gospodarowania zasobami wody, między innymi poprzez ochronę przed pogarszaniem się stanu wód, ekosystemów wodnych oraz ekosystemów lądowych i terenów podmokłych zależnych od wody. Geneza powstania terenów podmokłych oraz zbiorników naturalnych wody związana ze strukturą i typem gleb, ukształtowaniem terenu, ze spływem powierzchniowym wód w cyklu hydrologicznym oraz z wodami podziemnymi, które przy pochyłej warstwie nieprzepuszczalnej występują w postaci strumienia płynącej wody, znajdującej ujście w postaci źródeł lub sap. Ukształtowanie terenu jest funkcją grawitacyjnego zniesienia stokowego gleby będącego gęsto-plastycznym biegiem złoża powierzchownego po powierzchni nachylonej opisywanym równaniem Szwedowa-Binghama. Ruch gleby na skosach ustaje po osiągnięciu nachylenia końcowego. Stanem końcowym będzie profil H = H 0 , na którym krusz już jest w warunkach stabilności. W miarę upływu czasu kształt profilu dowolnego zbocza stanie się regularny niezależne od jego stanu pierwotnego, przy czym w jego dolnej części uformuje się strefa akumulacji kruszy, która przy określonych warunkach hydrologicznych i glebowych stanowić będzie naturalną zaporę wód powierzchniowych i zaskórnych. Celem prowadzenia badań było opracowanie metod oceny stabilności ukształtowania terenu z wykorzystaniem nowoczesnych metod fotogrametrycznych i geoinformacyjnych oraz pozyskiwania obszarów zagrożonych podtopieniem i zanieczyszczeniami związanymi z powierzchniowymi oraz gruntowymi spływami wód. Słowa kluczowe: ochrona środowiska, zanieczyszczenia wód, zanieczyszczenia gleb, zagospodarowanie terenu, GIS, NMRT, metody fotogrametryczne. WSTĘPCharakterystyka terenu, deniwelacja, stopień pofałdowania, wysokość i inne czynniki mają wpływ na zjawiska przyrodnicze zachodzące na jego powierzchni. Wiele dziedzin gospodarki i nauki takich jak zagospodarowanie przestrzenne, melio-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.