The paper objective is to study a hybrid welding process based on the combination of two methods: laser and plasma ones. The combination of two different types of welding is a promising way to detect and then eliminate the defects of each of them. The task to which the paper is devoted is aimed at finding out features when combining different approaches to the creation of fixed welded joints. The paper analyzes hybridization of laser and plasma piles in a concise way, provides generalized information about their main advantages and disadvantages. The distinctive novelty of this work is concise and cumulative analysis of the problem involved which has not been done before. The result of the study is the publication of the hybrid welding feature, explaining the principles of the working process of the devices. On the basis of the conducted research, the following conclusions can be drawn: hybridization of laser and plasma welding compensate for the disadvantages and increase the advantages of each other; during the study, the main pros and cons are summarized, important aspects of each of the affected methods for obtaining fixed welded joints are analyzed.
The study objective is the possibility of thrust augmentation of a turbojet engine due to upgrading the nozzle cluster by installing an external duct of the annular combustor on the engine case, acting as a nozzle. The problem to which the article is devoted is to get a new product with higher operating parameters at minimal cost by upgrading a mass-produced engine. The novelty of the work is in the introduction of an annular combustor into existing engines that are in serial production, thereby reducing the cost of producing a completely new product with greater thrust. During the research, a number of theoretical advantages of a new product based on a mass-produced engine are obtained, including increased thrust with minimal change in its weight, as well as the economic benefits of producing such units with minimal production changeover. At the stage of theoretical research of this topic, a retrofitted engine with an annular combustor has a number of advantages over the standard engine taken as a basis.
The purpose of the work presented in the paper consists in the choice of radio-transparent material that can withstand loads influencing a nose cone of an aircraft during a flight. In the paper there is solved a problem which consists in comparing the characteristics of different materials used in aircraft industry both common materials and composites and in the choice of the most efficient field of materials that meet the requirements of radio-transparency, strength and heat-resistance. The investigation work is carried out by means of the collection, processing and analysis of data obtained through an experimental way and containing information on strength characteristics, radio-transparency characteristics, on the range of operation temperatures, density and rigidity of each kind of material analyzed. On the basis of the investigation results a field of application of the materials under consideration is offered: in accordance with physical characteristics of composites analyzed the most efficient solution will be the application of glass-ceramic composites for manufacturing radio-transparent nose cones exposed to strong temperature changes during short periods of time caused by super-sonic speed achieved during flights and glass-ceramics, but glass-plastic having lower density and heat-resistance – for manufacturing nose cones of sub-sonic planes which are not subjected to such high thermal loads, at that it was defined that aircraft steels and composites based on metal matrix are not suitable for manufacturing nose cones in view of their high density and low radio-transparency.
The work purpose consists in the algorithm development for aircraft target choice. The investigations were carried out with the use of methods of a system analysis, a theory of modeling, mathematical methods, methods of object-directed programming. In farms when agricultural area processing it is advisable to use an aircraft. A choice is argued by aircraft advantages over the ground-based means of agricultural area processing which consist in mobility and a processing speed and also in the absence of mechanical impact upon the growth of the area under processing. In the paper there is offered a procedure for a choice of an aircraft type for processing different agricultural area on the criterion of minimum costs. An investigation novelty consists in the use of the algorithm developed with reference to the choice of agricultural aircraft for chemical agent distribution depending on agricultural area dimensions and a landscape. Conclusion: the developed algorithm for a target choice of an aircraft allows carrying out a complex analysis both of aircrafts (characters, engineering and flight characteristics) on the basis of costs minimum for an agricultural area processing, and a geometry (dimensions and configuration) of the areas to be subjected to processing. In the paper as an example there is carried out a choice of an aircraft for processing a set of areas with specified dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.