We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G, M05-2X/6-31+G, M05-2X/cc-pVTZ, B3LYP/6-31G, and HF/6-31G. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.
A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and openshell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr 2 dimer, exploring zeolitecatalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.Keywords quantum chemistry, software, electronic structure theory, density functional theory, electron correlation, computational modelling, Q-Chem Disciplines Chemistry CommentsThis article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Authors 185A summary of the technical advances that are incorporated in the fourth major release of the Q-CHEM quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly corre...
We find that vibrational contributions to a solute's free energy are in general insensitive to whether the solute vibrational frequencies are computed in the gas phase or in solution. In most cases, the difference is smaller than the intrinsic error in solvation free energies associated with the continuum approximation to solvation modeling, although care must be taken to avoid spurious results associated with limitations in the quantum-mechanical harmonic-oscillator approximation for very low-frequency molecular vibrations. We compute solute vibrational partition functions in aqueous and carbon tetrachloride solution and compare them to gas-phase molecular partition functions computed with the same level of theory and the same quasiharmonic approximation for the diverse and extensive set of molecules and ions included in the training set of the SMD continuum solvation model, and we find mean unsigned differences in vibrational contributions to the solute free energy of only about 0.2 kcal/mol. On the basis of these results and a review of the theory, we conclude, in contrast to previous work (Ho, J.; Klamt, H.; Coote, M. L. J. Phys. Chem. A 2010, 114, 13442), that using partition functions computed for molecules optimized in solution is a correct and useful approach for averaging over solute degrees of freedom when computing free energies of solutes in solution, and it is moreover recommended for cases where liquid and gas-phase solute structures differ appreciably or when stationary points present in liquid solution do not exist in the gas phase, for which we provide some examples. When gas-phase and solution-phase geometries and frequencies are similar, the use of gas-phase geometries and frequencies is a useful approximation.
We propose a novel approach to deriving partial atomic charges from population analysis. The new model, called Charge Model 5 (CM5), yields class IV partial atomic charges by mapping from those obtained by Hirshfeld population analysis of density functional electronic charge distributions. The CM5 model utilizes a single set of parameters derived by fitting to reference values of the gas-phase dipole moments of 614 molecular structures. An additional test set (not included in the CM5 parametrization) contained 107 singly charged ions with nonzero dipole moments, calculated from the accurate electronic charge density, with respect to the center of nuclear charges. The CM5 model is applicable to any charged or uncharged molecule composed of any element of the periodic table in the gas phase or in solution. The CM5 model predicts dipole moments for the tested molecules that are more accurate on average than those from the original Hirshfeld method or from many other popular schemes including atomic polar tensor and Löwdin, Mulliken, and natural population analyses. In addition, the CM5 charge model is essentially independent of a basis set. It can be used with larger basis sets, and thereby this model significantly improves on our previous charge models CMx (x = 1-4 or 4M) and other methods that are prone to basis set sensitivity. CM5 partial atomic charges are less conformationally dependent than those derived from electrostatic potentials. The CM5 model does not suffer from ill conditioning for buried atoms in larger molecules, as electrostatic fitting schemes sometimes do. The CM5 model can be used with any level of electronic structure theory (Hartree-Fock, post-Hartree-Fock, and other wave function correlated methods or density functional theory) as long as an accurate electronic charge distribution and a Hirshfeld analysis can be computed for that level of theory.
A new universal continuum solvation model (where "universal" denotes applicable to all solvents), called SM8, is presented. It is an implicit solvation model, also called a continuum solvation model, and it improves on earlier SMx universal solvation models by including free energies of solvation of ions in nonaqueous media in the parametrization. SM8 is applicable to any charged or uncharged solute composed of H, C, N, O, F, Si, P, S, Cl, and/or Br in any solvent or liquid medium for which a few key descriptors are known, in particular dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters. It does not require the user to assign molecular-mechanics types to an atom or group; all parameters are unique and continuous functions of geometry. It may be used with any level of electronic structure theory as long as accurate partial charges can be computed for that level of theory; we recommend using it with self-consistently polarized Charge Model 4 or other self-consistently polarized class IV charges, in which case analytic gradients are available. The model separates the observable solvation free energy into two components: the long-range bulk electrostatic contribution arising from a self-consistent reaction field treatment using the generalized Born approximation for electrostatics is augmented by the non-bulk-electrostatic contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. The cavities for the bulk electrostatics calculation are defined by superpositions of nuclear-centered spheres whose sizes are determined by intrinsic atomic Coulomb radii. The radii used for aqueous solution are the same as parametrized previously for the SM6 aqueous solvation model, and the radii for nonaqueous solution are parametrized by a training set of 220 bare ions and 21 clustered ions in acetonitrile, methanol, and dimethyl sulfoxide. The non-bulk-electrostatic terms are proportional to the solvent-accessible surface areas of the atoms of the solute and have been parametrized using solvation free energies for a training set of 2346 solvation free energies for 318 neutral solutes in 90 nonaqueous solvents and water and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The model is tested with three density functionals and with four basis sets: 6-31+G(d,p), 6-31+G(d), 6-31G(d), and MIDI!6D. The SM8 model achieves mean unsigned errors of 0.5-0.8 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 2.2-7.0 kcal/mol for ions. The model outperforms the earlier SM5.43R and SM7 universal solvation models as well as the default Polarizable Continuum Model (PCM) implemented in Gaussian 98/03, the Conductor-like PCM as implemented in GAMESS, Jaguar's continuum model based on numerical solution of the Poisson equation, and the GCOSMO model implemented in NWChem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.