TACRED (Zhang et al., 2017) is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE). But, even with recent advances in unsupervised pretraining and knowledge enhanced neural RE, models still show a high error rate. In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement? And how do crowd annotations, dataset, and models contribute to this error rate? To answer these questions, we first validate the most challenging 5K examples in the development and test sets using trained annotators. We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled. On the relabeled test set the average F1 score of a large baseline model set improves from 62.1 to 70.1. After validation, we analyze misclassifications on the challenging instances, categorize them into linguistically motivated error groups, and verify the resulting error hypotheses on three state-of-the-art RE models. We show that two groups of ambiguous relations are responsible for most of the remaining errors and that models may adopt shallow heuristics on the dataset when entities are not masked.
Despite the recent progress, little is known about the features captured by state-of-the-art neural relation extraction (RE) models. Common methods encode the source sentence, conditioned on the entity mentions, before classifying the relation. However, the complexity of the task makes it difficult to understand how encoder architecture and supporting linguistic knowledge affect the features learned by the encoder. We introduce 14 probing tasks targeting linguistic properties relevant to RE, and we use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets, TACRED and SemEval 2010 Task 8. We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance. For example, adding contextualized word representations greatly increases performance on probing tasks with a focus on named entity and part-of-speech information, and yields better results in RE. In contrast, entity masking improves RE, but considerably lowers performance on entity type related probing tasks.
Human language allows us to express the same meaning in various ways. Recognizing that the meaning of one text can be inferred from the meaning of another can be of help in many natural language processing applications. One such application is the categorization of emails. In this paper, we describe the analysis of a real-world dataset of manually categorized customer emails written in the German language. We investigate the nature of textual inference in this data, laying the ground for developing an inference-based email categorization system. This is the first analysis of this kind on German data. We compare our results to previous analyses on English data and present major differences.
We present sar-graphs, a knowledge resource that links semantic relations from factual knowledge graphs to the linguistic patterns with which a language can express instances of these relations. Sar-graphs expand upon existing lexicosemantic resources by modeling syntactic and semantic information at the level of relations, and are hence useful for tasks such as knowledge base population and relation extraction. We present a languageindependent method to automatically construct sar-graph instances that is based on distantly supervised relation extraction. We link sar-graphs at the lexical level to BabelNet, WordNet and UBY, and present our ongoing work on pattern-and relationlevel linking to FrameNet. An initial dataset of English sar-graphs for 25 relations is made publicly available, together with a Java-based API.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.