TACRED (Zhang et al., 2017) is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE). But, even with recent advances in unsupervised pretraining and knowledge enhanced neural RE, models still show a high error rate. In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement? And how do crowd annotations, dataset, and models contribute to this error rate? To answer these questions, we first validate the most challenging 5K examples in the development and test sets using trained annotators. We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled. On the relabeled test set the average F1 score of a large baseline model set improves from 62.1 to 70.1. After validation, we analyze misclassifications on the challenging instances, categorize them into linguistically motivated error groups, and verify the resulting error hypotheses on three state-of-the-art RE models. We show that two groups of ambiguous relations are responsible for most of the remaining errors and that models may adopt shallow heuristics on the dataset when entities are not masked.
Distantly supervised relation extraction is widely used to extract relational facts from text, but suffers from noisy labels. Current relation extraction methods try to alleviate the noise by multi-instance learning and by providing supporting linguistic and contextual information to more efficiently guide the relation classification. While achieving state-of-the-art results, we observed these models to be biased towards recognizing a limited set of relations with high precision, while ignoring those in the long tail. To address this gap, we utilize a pre-trained language model, the OpenAI Generative Pre-trained Transformer (GPT) (Radford et al., 2018). The GPT and similar models have been shown to capture semantic and syntactic features, and also a notable amount of "common-sense" knowledge, which we hypothesize are important features for recognizing a more diverse set of relations. By extending the GPT to the distantly supervised setting, and fine-tuning it on the NYT10 dataset, we show that it predicts a larger set of distinct relation types with high confidence. Manual and automated evaluation of our model shows that it achieves a state-of-the-art AUC score of 0.422 on the NYT10 dataset, and performs especially well at higher recall levels.
Despite the recent progress, little is known about the features captured by state-of-the-art neural relation extraction (RE) models. Common methods encode the source sentence, conditioned on the entity mentions, before classifying the relation. However, the complexity of the task makes it difficult to understand how encoder architecture and supporting linguistic knowledge affect the features learned by the encoder. We introduce 14 probing tasks targeting linguistic properties relevant to RE, and we use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets, TACRED and SemEval 2010 Task 8. We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance. For example, adding contextualized word representations greatly increases performance on probing tasks with a focus on named entity and part-of-speech information, and yields better results in RE. In contrast, entity masking improves RE, but considerably lowers performance on entity type related probing tasks.
Representations in the hidden layers of Deep Neural Networks (DNN) are often hard to interpret since it is difficult to project them into an interpretable domain. Graph Convolutional Networks (GCN) allow this projection, but existing explainability methods do not exploit this fact, i.e. do not focus their explanations on intermediate states. In this work, we present a novel method that traces and visualizes features that contribute to a classification decision in the visible and hidden layers of a GCN. Our method exposes hidden cross-layer dynamics in the input graph structure. We experimentally demonstrate that it yields meaningful layerwise explanations for a GCN sentence classifier.
Recently, state-of-the-art NLP models gained an increasing syntactic and semantic understanding of language, and explanation methods are crucial to understand their decisions. Occlusion is a well established method that provides explanations on discrete language data, e.g. by removing a language unit from an input and measuring the impact on a model's decision. We argue that current occlusionbased methods often produce invalid or syntactically incorrect language data, neglecting the improved abilities of recent NLP models. Furthermore, gradient-based explanation methods disregard the discrete distribution of data in NLP. Thus, we propose OLM: a novel explanation method that combines occlusion and language models to sample valid and syntactically correct replacements with high likelihood, given the context of the original input. We lay out a theoretical foundation that alleviates these weaknesses of other explanation methods in NLP and provide results that underline the importance of considering data likelihood in occlusion-based explanation. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.