Post-stroke dementia (PSD) or post-stroke cognitive impairment (PSCI) may affect up to one third of stroke survivors. Various definitions of PSCI and PSD have been described. We propose PSD as a label for any dementia following stroke in temporal relation. Various tools are available to screen and assess cognition, with few PSD-specific instruments. Choice will depend on purpose of assessment, with differing instruments needed for brief screening (e.g., Montreal Cognitive Assessment) or diagnostic formulation (e.g., NINDS VCI battery). A comprehensive evaluation should include assessment of pre-stroke cognition (e.g., using Informant Questionnaire for Cognitive Decline in the Elderly), mood (e.g., using Hospital Anxiety and Depression Scale), and functional consequences of cognitive impairments (e.g., using modified Rankin Scale). A large number of biomarkers for PSD, including indicators for genetic polymorphisms, biomarkers in the cerebrospinal fluid and in the serum, inflammatory mediators, and peripheral microRNA profiles have been proposed. Currently, no specific biomarkers have been proven to robustly discriminate vulnerable patients (‘at risk brains’) from those with better prognosis or to discriminate Alzheimer’s disease dementia from PSD. Further, neuroimaging is an important diagnostic tool in PSD. The role of computerized tomography is limited to demonstrating type and location of the underlying primary lesion and indicating atrophy and severe white matter changes. Magnetic resonance imaging is the key neuroimaging modality and has high sensitivity and specificity for detecting pathological changes, including small vessel disease. Advanced multi-modal imaging includes diffusion tensor imaging for fiber tracking, by which changes in networks can be detected. Quantitative imaging of cerebral blood flow and metabolism by positron emission tomography can differentiate between vascular dementia and degenerative dementia and show the interaction between vascular and metabolic changes. Additionally, inflammatory changes after ischemia in the brain can be detected, which may play a role together with amyloid deposition in the development of PSD. Prevention of PSD can be achieved by prevention of stroke. As treatment strategies to inhibit the development and mitigate the course of PSD, lowering of blood pressure, statins, neuroprotective drugs, and anti-inflammatory agents have all been studied without convincing evidence of efficacy. Lifestyle interventions, physical activity, and cognitive training have been recently tested, but large controlled trials are still missing.
Mrachacz-Kersting N, Jiang N, Stevenson AJ, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, Farina D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol 115: 1410 -1421, 2016. First published December 30, 2015 doi:10.1152/jn.00918.2015 have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCI associative group) or randomly (BCI nonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCI associative intervention, but not for the BCI nonassociative group. FM scores (0.8 Ϯ 0.46 point difference, P ϭ 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCI associative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention.
We explored the relationship between acute ischaemic stroke (IS) early functional outcome and serum levels of homocysteine, vitamin B12, and D in a noninterventional prospective clinical study. We enrolled 50 patients with first-ever IS and performed laboratory tests and functional assessment at three time points: on admission and three and six months after stroke. Modified Rankin Scale (mRS), NIHSS scale, and Barthel index (BI) scores were assessed in all participants by trained examiner blinded to laboratory data. Patients did not receive treatment that might alter laboratory data. Admission NIHSS correlated with homocysteine levels (r = 0.304, p < 0.05), B12 level (r = −0.410, p < 0.01), and vitamin D levels (r = −0.465, p < 0.01). Functional outcome measures (BI and mRS) did not significantly correlate with homocysteine and vitamin D3 levels at 3 and 6 months. However, a positive correlation with vitamin B12 levels was detected for BI both at 3 and 6 months and mRS at 6 months. Higher serum vitamin B12 levels were associated with better functional outcome at follow-up.
Remodelling of collagen fibers has been described during every phase of cancer genesis and progression. Changes in morphology and organization of collagen fibers contribute to the formation of microenvironment that favors cancer progression and development of metastasis. However, there are only few data about remodelling of collagen fibers in healthy looking mucosa distant from the cancer. Using SHG imaging, electron microscopy and specialized softwares (CT-FIRE, CurveAlign and FiberFit), we objectively visualized and quantified changes in morphology and organization of collagen fibers and investigated possible causes of collagen remodelling (change in syntheses, degradation and collagen cross-linking) in the colon mucosa 10 cm and 20 cm away from the cancer in comparison with healthy mucosa. We showed that in the lamina propria this far from the colon cancer, there were changes in collagen architecture (width, straightness, alignment of collagen fibers and collagen molecules inside fibers), increased representation of myofibroblasts and increase expression of collagen-remodelling enzymes (LOX and MMP2). Thus, the changes in organization of collagen fibers, which were already described in the cancer microenvironment, also exist in the mucosa far from the cancer, but smaller in magnitude. Extracellular matrix (ECM) is no longer considered as an inert substrate, a three-dimensional network which only "fills the spaces" between cells and provide mechanical support 1,2. Today, ECM is known to be a complex and dynamic structure, whose chemical and biophysical properties affect cell adhesion 3 , proliferation 4 morphology 5 , migration 6 , regulate tissue morphogenesis 7,8 and fluid volume in tissues 9. The most abundant component of ECM in the lamina propria of the colon mucosa is type I collagen. Remodelling of collagen fibers has been described in almost every solid cancer, including colorectal cancer. During tumor formation and progression, collagen remodelling is constantly carried out: degradation, synthesis, cross-linking of fibers, change of fiber orientation, and interaction of cells of the innate and acquired immune system with collagen fibers 10,11. Changes in morphology, representation, and organization of collagen fibers contribute to the formation of the microenvironment that favors tumor progression, primarily through its effect on cell migration and polarization 12. Also, remodelling of collagen fibers on premetastatic sites is of great importance in determination of survival and growth of disseminated cancer cells, and thus, formation of metastasis 13,14. Remodelling of collagen fibers may be a result of changes in synthesis, degradation or cross-linking. Main cells responsible for synthesis of collagen in colon mucosa are fibroblasts and myofibroblasts. The most important enzymes for degradation of collagen fibers are matrix metalloproteinases (MMPs). It has been shown that expression of MMP2 and MMP9 is increased in colorectal cancer and influences its progression and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.