Currents affect wind waves parameters. The issue of significance of this influence for the Black Sea has not been studied properly. The purpose of this paper is to study the scale, spatial and temporal variability of influence of sea currents on the wave height in the Black Sea. The research was carried out based on simulation using SWAN wave model and an irregular computational grid. Two datasets were used as input data: the NCEP/CFSv2 wind reanalysis and current data taken from the Remote Sensing Department's archive of the Marine Hydrophysical Institute of RAS. It is shown that the average wave height mainly decreases when sea current is considered. These changes are insignificant relative to the average values of wave heights. The greatest negative changes are typical of the western and northeast parts of the Black Sea. Here, the consideration of circulation reduces the average annual wave heights by up to 0.1 m. A slight increase in the average wave height is typical of the southern and southeast parts of the sea as well as the northwest shelf. The positive contribution to the mean annual wave heights is up to 0.02 m. When taken into account, currents change wave parameters at a maximum in winter months and at a minimum in late spring and summer. Currents change the mean monthly wave heights by –0.04…0.06 m in January and February in most parts of the sea. The contribution of currents is close to zero in June and July. The maximum changes in wave height reach 6–10 % of the monthly average.
Wave buoy measurements were carried out near the north-eastern Black Sea coast at the natural reserve Utrish in 2020-2021. In total, about 11 months of data records were collected during two stages of the experiment at 600 and 1500 meters offshore and depths of 18 and 42 meters. The measured waves propagate almost exclusively from the seaward directions. Generally, the waves do not follow the local wind directions, thus, implying a mixed sea state. Nevertheless, dimensionless wave heights and periods appears to be quite close to the previously established empirical laws for the wind-driven seas. The results of the wave turbulence theory are applied for estimates of spectral energy fluxes and their correspondence to the energy flux from the turbulent wind pulsations. These estimates are consistent with today's understanding of wind-wave interaction. It is shown that the main fraction of the wind energy flux goes to the direct Kolmogorov-Zakharov cascade to high wave frequencies and then to dissipation in small scales. Less than 1% of the wind energy flux is directed to low frequency band (the so-called inverse Kolmogorov-Zakharov cascade), thus, providing wave energy growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.