Tunnel magnetoresistance ratios of up to 40% are measured between 10 K and 300 K when the highly spin-polarized compensated ferrimagnet, Mn2RuxGa, is integrated into MgO-based perpendicular magnetic tunnel junctions. Temperature and bias dependences of the tunnel magnetoresistance effect, with a sign change near −0.2 V, reflect the structure of the Mn2RuxGa interface density of states. Despite magnetic moment vanishing at a compensation temperature of 200 K for x≈0.8, the tunnel magnetoresistance ratio remains non-zero throughout the compensation region, demonstrating that the spin-transport is governed by one of the Mn sub-lattices only. Broad temperature range magnetic field immunity of at least 0.5 T is demonstrated in the same sample. The high spin polarization and perpendicular magnetic anisotropy make Mn2RuxGa suitable for applications in both non-volatile magnetic random access memory cells and terahertz spin-transfer oscillators.
We investigate magnetization dynamics in asymmetric interlayer exchange coupled Py/Ru/Py trilayers using both vector network analyzer-based and electrically-detected ferromagnetic resonance techniques. Two different ferromagnetic resonance modes, in-phase and out-of-phase, are observed across all three regimes of the static magnetization configurations, through antiparallel alignment at low fields, the spinflop transition at intermediate fields and the parallel alignment at high fields. The non-monotonic behavior of the modes as a function of the external field is explained in detail by analyzing the interlayer exchange and Zeeman energies, and is found to be solely governed by the interplay of their dynamical components. In addition, the linewidths of both modes were determined across the three regimes and the different behaviors of the linewidths versus external magnetic field are attributed to mutual spin pumping induced in the samples. Interestingly, the difference between the linewidths of the out-of-phase and in-phase modes decreases at the spin-flop transition and is reversed between the antiparallel and parallel aligned magnetization states. arXiv:2006.13031v1 [cond-mat.mes-hall]
Due to its negligible spontaneous magnetization, high spin polarization and giant perpendicular magnetic anisotropy, Mn2RuxGa (MRG) is an ideal candidate as an oscillating layer in THz spin-transfer-torque nano-oscillators. Here, the effect of ultrathin Al and Ta diffusion barriers between MRG and MgO in perpendicular magnetic tunnel junctions is investigated and compared to devices with a bare MRG/MgO interface. Both the compensation temperature, Tcomp, of the electrode and the tunneling magnetoresistance (TMR) of the device are highly sensitive to the choice and thickness of the insertion layer used. High-resolution transmission electron microscopy, as well as analysis of the TMR, its bias dependence, and the resistance-area product allow us to compare the devices from a structural and electrical point of view. Al insertion leads to the formation of thicker effective barriers and gives the highest TMR, at the cost of a reduced Tcomp. Ta is the superior diffusion barrier which retains Tcomp, however, it also leads to a much lower TMR on account of the short spin diffusion length which reduces the tunneling spin polarization. The study shows that fine engineering of the Mn2RuxGa/barrier interface to improve the TMR amplitude is feasible.
Nanoscale, low-phase noise, tunable transmitter-receiver links are key for enabling the progress of wireless communication. We demonstrate that vortex-based spin-torque nano-oscillators, which are intrinsically low-noise devices due to their topologically-protected magnetic structure, can achieve frequency tunability when submitted to local ion implantation. In the experiments presented here, the gyrotropic mode is excited with spin-polarized alternating currents and anisotropic magnetoresistance measurements yield discreet frequencies from a single device. Indeed, chromium-implanted regions of permalloy disks exhibit different saturation magnetisation than neighbouring, non-irradiated areas, and thus different resonance frequency, corresponding to the specific area where the core is gyrating. Our study proves that such devices can be fabricated without the need of further lithographical steps, suggesting ion irradiation can be a viable and costeffective fabrication method for densely-packed networks of oscillators. This material is available free of charge via the Internet at http://pubs.acs.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.