A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).
The aim of this pot experiment was to determine the effect of increasing rates of meat and bone meal (MBM), applied alone or in combination with a microbial preparation containing Bacillus subtilis (FITOdoctor), on the growth of Sinapis alba L.. Dry matter (DM) yield, the nitrogen (N) and phosphorus (P) content of white mustard were determined, together with the mineral N (Nmin) and available P content of soil. The application of FITOdoctor to the soil improved white mustard yield only during the second growing season. Second-harvest white mustard biomass had a significantly lower content of N and P than first-harvest biomass. The highest MBM rate significantly increased the Nmin content of soil. Nitrogen uptake by plants and N concentration in biomass were highest in the treatments with the highest mineral N content of soil. Similar relationships were observed for P whose uptake by plants was also affected by B. subtilis in two treatments (NPK, 0.8% MBM). MBM is a valuable N and P fertilizer, whereas B. subtilis has varied effects.
The aim of a two-year field experiment conducted in north-eastern (NE) Poland was to evaluate the effect of meat and bone meal (MBM) applied without or with mineral nitrogen (N) on seed yield, thousand seed weight (TSW), protein yield, fat yield, fatty acid profile and glucosinolate (GLS) concentrations in winter oilseed rape. Five treatments were compared: MBM applied at 1.0, 1.5, 2.0 Mg ha−1, inorganic NPK, and a zero-N check. The first two MBM plots and the NPK plots received supplemental inorganic N to provide a total of 158 kg N ha−1. The yields of winter oilseed rape were highest in the treatment with mineral (NPK) fertilization. All plots receiving MBM yielded equally to each other but greater than the unfertilized check. Winter oilseed rape accumulated significantly more protein in seeds in the NPK treatment than in the 1.5 Mg ha−1 MBM + 40 kg N ha−1 treatment. The crude fat content of seeds was significantly higher in the 1.5 Mg MBM ha−1 + 40 kg N ha−1 treatment, compared with the NPK treatment and the 1.0 Mg MBM ha−1 + 79 kg N ha−1 treatment. Oleic, linoleic, and α-linolenic acids accounted for nearly 90% of total fatty acids in rapeseed oil, and the average ratio of linoleic acid to α-linolenic acid was 1.81:1. Fertilization had a minor influence on the proportions of fatty acids, which were considerably affected by adverse weather conditions.
The aim of a six-year field experiment conducted in north-eastern (NE) Poland was to determine the effect of meat and bone meal (MBM) on phosphorus (P) content and uptake by different crops, soil available P balance, and soil pH. Five treatments were established: (1) zero-fert; (2) inorganic NPK; (3) 1.0 t ha−1 MBM; (4) 1.5 t ha−1 MBM; and (5) 2.0 t ha−1 MBM. Constant nitrogen (N) and potassium (K) rates and increasing P rates (0.0; 45; 68 and 90 kg ha−1) were applied. The lowest dose of MBM, which supplied 45 kg P ha−1 each year, was sufficient to meet the P requirements of silage maize, winter wheat, and winter oilseed rape to the same extent as mineral P fertilizer at the equivalent rate. The uptake, balance, and utilization of P by plants were comparable in both treatments. Phosphorus applied each year at high rates (68 and 90 kg ha−1) with two higher MBM doses contributed to excessive P accumulation in soil; therefore, MBM should not be applied at doses exceeding 1.5 t ha−1 to crops grown in acidic soils. Soil pH was not significantly affected by MBM. MBM can replace conventional mineral P fertilizers in crop cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.