In this review electrochemical and structural data for the electrodes made of certain of perspective materials for supercapacitors are considered. These electrodes were made on the basis of high-dispersed carbon materials. The following materials were used: singlelayer and multilayer carbon nanotubes; reduced oxide of graphene; the carbide type activated carbon; polyacrilonitrile fibers treated by carbonization and activation; the activated carbon fibrous material; the activated carbon cloth; a composite of polyporphirine on carbon black; polyporhine of magnesium, electrodeposited on carbon paper; and a polyaniline composite with the singlelayer nanotubes, electrodeposited on carbon paper. The short review of techniques of synthesis of these electrode materials is presented. Comparison of capactance characteristics of these electrodes for the purpose of the recommendation of their use in certain types of electrochemical supercapacitors is carried out.
In the current paper electrospun nanofiber mats were derived from polyacrylonitrile (PAN). The temperature influence on the volumetric and surface composition of the resulting pyropolymers was studied by means of elemental analysis and X-ray photoelectron spectroscopy. Rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) methods were used to determine the catalytic properties of PAN pyropolymers, derived at carbonization temperature interval of 600–1200 °C, as well as composite PAN/support catalysts, carbonized at 900 °C, in the oxygen reduction reaction in H2SO4 и KOH solutions. The methods of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic polarization were utilized to characterize the charge capacitive properties. An equivalent scheme modeling the electrochemical response of PAN pyropolymer in H2SO4solution was proposed. An assumption was made of interrelation between the PAN-T catalytic activity and the occurrence of condensed parquet aromatic structure comprising of nitrogen-carbon bonds. Evidence was given that Fe atoms play the key role in the synthesis of active non-precious catalysts with high selectivity towards the 4-electron O2 reduction. The possibility of the catalysts synthesis for 2-electron ORR without the use of metal precursors was evidently shown. Prominent correlation of capacitive and catalytic properties for these materials was observed in H2SO4solution. The optimal PAN pyropolymers synthesis temperature was determined to be in the range of 750–950 °C. The mats of PAN-T were shown to be feasible as the negative electrodes of supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.