Sustainable land management (SLM) is a leading policy issue in Ethiopia. However, the adoption and continuous use of SLM technologies remain low. This study investigates the interrelationship of adopted SLM technologies and key factors of farmers’ decisions to use SLM technologies in the North Gojjam sub-basin of the Upper Blue Nile. The study was based on the investigation of cross-sectional data obtained from 414 randomly selected rural household heads, focus group discussions, and key informant interviews. Descriptive statistics and Econometric models (i.e., Multivariate Probit and Poisson regression) were used to analyze quantitative data, while a content analysis method was used for qualitative data analysis. Results indicate that at least one type of SLM technology was implemented by 94% of farm households in the North Gojjam sub-basin. The most widely used technologies were chemical fertilizer, soil bund, and animal manure. Most of the adopted SLM technologies complement each other. Farm size, family size, male-headed household, local institutions, perception of soil erosion, livestock size, total income, and extension service increased the adoption probability of most SLM technologies. Plot fragmentation, household age, plot distance, off-farm income, market distance, and perception of good fertile soil discourage the adoption probability of most SLM technologies. To scale up SLM technologies against land degradation, it is important to consider households’ demographic characteristics, the capacity of farm households, and plot-level related factors relevant to the specific SLM technologies being promoted.
The headwaters of the Blue Nile River in Ethiopia contain fragile mountain ecosystems and are highly susceptible to land degradation that impacts water quality and flow dynamics in a major transboundary river system. This study evaluates the status of land use/cover (LULC) change and key drivers of change over the past 31 years through a combination of satellite remote sensing and surveying of the local understanding of LULC patterns and drivers. Seven major LULC types (forest land, plantation forest, grazing land, agriculture land, bush and shrub land, bare land, and water bodies) from Landsat images of 1986, 1994, 2007, and 2017 were mapped. Agriculture and plantation forest land use/cover types increased by 21.4% and 368.8%, respectively, while other land use/cover types showed a decreasing trend: water body by 50.0%, bare land by 7.9%, grassland by 41.7%, forest by 28.9%, and bush and shrubland by 38.4%. Overall, 34.6% of the landscape experienced at least one LULC transition over the past 31 years, with 15.3% representing the net change and 19.3% representing the swap change. The percentage change in plantation forest land increased with an increasing altitude and slope gradient during the study period. The mapped LULC changes are consistent with the pressures reported by local residents. They are also consistent with root causes that include population growth, land tenure and common property rights, persistent poverty, weak enforcement of rules and low levels of extension services, a lack of public awareness, and poor infrastructure. Hence, the drivers for LULC should be controlled, and sustainable resources use is required; otherwise, these resources will soon be lost and will no longer be able to play their role in socioeconomic development and environmental sustainability.
Mapping and quantifying the status of Land use/Land cover (LULC) changes and drivers of change are important for identifying vulnerable areas for change and designing sustainable ecosystem services. This study analyzed the status of LULC changes and key drivers of change for the last 30 years through a combination of remote sensing and GIS with the surveying of the local community understanding of LULC patterns and drivers in the Gubalafto district, Northeastern Ethiopia. Five major LULC types (cultivated and settlement, forest cover, grazing land, bush land and bare land) from Landsat images of 1986, 2000, and 2016 were mapped. The results demonstrated that cultivated and settlement constituted the most extensive type of LULC in the study area and increased by 9% extent. It also revealed that a substantial expansion of bush land and bare land areas during the past 30 years. On the other hand, LULC classes that has high environmental importance such as grazing land and forest cover have reduced drastically through time with expanding cultivated and settlement during the same period. The grazing land in 1986 was about 11.1% of the total study area, and it had decreased to 5.7% in 2016. In contrast, cultivated and settlement increased from 45.6% in 1986 to 49.5% in 2016. Bush land increased from 14.8 to 21% in the same period, while forest cover declined from 8.9 to 2% in the same period. The root causes for LULC changes in this particular area include population growth, land tenure insecurity, and common property rights, persistent poverty, climate change, and lack of public awareness. Therefore, the causes for LULC changes have to be controlled, and sustainable resources use is essential; else, these scarce natural resource bases will soon be lost and will no longer be able to play their contribution in sustainable ecosystem services. Article Highlights Forest cover and grazing lands declined rapidly. Fluctuating trends in cultivated and settlement, bush land and bare land. Population pressure and associated demand are the main causes behind LULC changes in the study area.
Mapping and quantifying land degradation status is important for identifying vulnerable areas and to design sustainable landscape management. This study maps and quantifies land degradation status in the north Gojjam sub-basin of the Upper Blue Nile River (Abbay) using GIS and remote sensing integrated with multicriteria analysis (MCA). This is accomplished using a combination of biological, physical, and chemical land degradation indicators to generate a comprehensive land degradation assessment. All indicators were standardized and weighted using analytical hierarchy and pairwise comparison techniques. About 45.3% of the sub-basin was found to experience high to very high soil loss risk, with an average soil loss of 46 t ha−1yr−1. More than half of the sub-basin was found to experience moderate to high level of biological degradation (low vegetation status and low soil organic matter level). In total, 80.2% of the area is characterized as having a moderate level of physical land degradation. Similarly, the status of chemical degradation for about 55.8% and 39% of the sub-basin was grouped as low and moderate, respectively. The combined spatial MCA of biological, chemical, and physical land degradation indicators showed that about 1.14%, 32%, 35.4%, and 30.5% of the sub-basin exhibited very low, low, moderate, and high degradation level, respectively. This study has concluded that soil erosion and high level of biological degradation are the most important indicators of land degradation in the north Gojjam sub-basin. Hence, the study suggests the need for integrated land management practices to reduce land degradation, enhance the soil organic matter content, and increase the vegetation cover in the sub-basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.