The impacts of climate change and climate variability on human life have led the scientific community to monitor the behavior of weather and climate variables at different spatial and temporal scales. This paper explores seasonal and annual trends of rainfall in the Lake Tana basin (LTB) and their teleconnections with global sea surface temperatures (SSTs) over the period between 1979 and 2015. The nonparametric Mann–Kendall test and Sen’s slope estimate are applied to the rainfall data collected from the National Meteorology Agency (NMA) of Ethiopia for detecting and estimating rainfall trends. Additionally, Pearson’s correlation coefficient method is used to determine the effect of SST variations on rainfall. The assessment of rainfall trends indicates that the amount of annual rainfall in the Lake Tana basin is increasing, but the rate of increase is not statistically significant. Seasonal analysis reveals that the smallest amount of rainfall occurs in the Bega season, and this season is getting drier with time. However, the analysis indicates that the other two seasons (Belg and Kiremt) are becoming wetter. The rainfall in Kiremt is increasing significantly (significant at the p=0.05 level) in Debre Tabor station with a rate of 10.20 mm/year. Besides, 78.1% of the total annual rainfall in the basin occurs during this rainy (Kiremt) season, whereas Bega and Belg contribute some 9.4% and 12.5%, respectively. Furthermore, the correlation analysis of rainfall and SSTs indicates that rainfall of the LTB is highly affected by the variations of SSTs.
Sustainable land management (SLM) is a leading policy issue in Ethiopia. However, the adoption and continuous use of SLM technologies remain low. This study investigates the interrelationship of adopted SLM technologies and key factors of farmers’ decisions to use SLM technologies in the North Gojjam sub-basin of the Upper Blue Nile. The study was based on the investigation of cross-sectional data obtained from 414 randomly selected rural household heads, focus group discussions, and key informant interviews. Descriptive statistics and Econometric models (i.e., Multivariate Probit and Poisson regression) were used to analyze quantitative data, while a content analysis method was used for qualitative data analysis. Results indicate that at least one type of SLM technology was implemented by 94% of farm households in the North Gojjam sub-basin. The most widely used technologies were chemical fertilizer, soil bund, and animal manure. Most of the adopted SLM technologies complement each other. Farm size, family size, male-headed household, local institutions, perception of soil erosion, livestock size, total income, and extension service increased the adoption probability of most SLM technologies. Plot fragmentation, household age, plot distance, off-farm income, market distance, and perception of good fertile soil discourage the adoption probability of most SLM technologies. To scale up SLM technologies against land degradation, it is important to consider households’ demographic characteristics, the capacity of farm households, and plot-level related factors relevant to the specific SLM technologies being promoted.
This study examined smallholder farmers’ perception about climate change and variability compared with the observed metrological data and their adaptation strategies in response to the perceived impacts of climate change. The multistage sampling method was employed to select 358 rural farmers in Hawzen and Irob districts located in semiarid highlands of Eastern Tigray, northern Ethiopia. Moreover, areal gridded surface monthly rainfall and temperature data between 1983 and 2015 were collected from National Meteorology Agency of Ethiopia. The results revealed that about 98.56 and 92 percent of farmers perceived a decrease in annual rainfall. In addition, 87 and 90 percent of farmers noticed that temperature was increased in Hawzen and Irob districts, respectively. Harmoniously, the modified Mann–Kendall trend test confirmed that annual rainfall was decreased by 32.38 mm and 121.33 mm during the period of analysis. Furthermore, mean annual temperature increased statistically significant (p<0.001) by about 0.40°C and 0.39°C per decade during the period of analysis cognate with the farmers’ perception. To reduce the perceived impacts of climate change, farmers adopted various farm-level adaptation strategies that vary significantly between the two groups. Soil and water conservation, planting trees, crop varieties, changing crop calendar, biological conservation, and irrigation were among the dominant adaptation strategies, respectively, in the study area. The results of this study provide baseline information for local governments, subsequent researchers, and policy-makers in terms of farmers’ perception of climate change and adaptation strategies.
The main purpose of this study was to assess the effectiveness of watershed management intervention in Chena Woreda. A systematic sampling technique was used to select sample micro-watersheds, and random sampling method was used to select individual households from both intervention and non-intervention areas. Data were collected through field observation, household questionnaire survey, focused group discussion, in-depth interview and key informant interview. Moreover, physical soil and water conservation structures' layout measurement was conducted. Descriptive statistics, t-test, chi-square test and participation index were used for data analyses. The study revealed that the intervention has good achievements in reducing soil erosion, improving water availability and quality, developing tree plantation and diversifying household income sources in the catchment. However, poor community participation, lack of the structures design alignment with standards, inappropriate time of implementation, lack of diversified soil water conservation measures, absence of regular maintenance and management of the structures were some of the major limitation of the intervention. Therefore, this study recommends that the stakeholders should make appropriate correction measures for observed failures and further interdisciplinary study should be conducted to explore the problems.
It is critical to develop technologies that simultaneously improve agricultural production, offset impacts of climate change, and ensure food security in a changing climate. Within this context, considerable attention has been given to climate-smart agricultural practices (CSA). This study was conducted to investigate the effects of integrating different CSA practices on crop production, soil fertility, and carbon sequestration after being practiced continuously for up to 10 years. The CSA practices include use of soil and water conservation (SWC) structures combined with biological measures, hedgerow planting, crop residue management, grazing management, crop rotation, and perennial crop-based agroforestry systems. The landscapes with CSA interventions were compared to farmers’ business-as-usual practices (i.e., control). Wheat (Triticum sp.) yield was quantified from 245 households. The results demonstrated that yield was 30–45% higher under CSA practices than the control (p < 0.05). The total carbon stored at a soil depth of 1 m was three- to seven-fold higher under CSA landscapes than the control. CSA interventions slightly increased the soil pH and exhibited 2.2–2.6 and 1.7–2.7 times more total nitrogen and plant-available phosphorus content, respectively, than the control. The time series Normalized Difference Water Index (NDWI) revealed higher soil moisture content under CSA. The findings illustrated the substantial opportunity of integrating CSA practices to build climate change resilience of resource-poor farmers through improving crop yield, reducing nutrient depletion, and mitigating GHG emissions through soil carbon sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.