Knowledge about the extent of river bed overflow is extremely necessary for the determination of areas at risk. The City of Altamira-PA, located on the banks of the Xingu River, historically suffers from extreme events of floods that provoke floods, causing great damages to the population. Considering the problem, this paper presents a monthly level prediction system of the Xingu River based on neural networks perceptron of multiple layers. For the development of the system, precipitacion data were used in the basin and sub-basins of the Xingu River, and SST information (Sea Surface Temperature) from 1979 to 2016. The satisfactory results demonstrate the great applicability of the artificial neural networks to the problem. Resumo O conhecimento acerca da amplitude do transbordamento dos leitos fluviais é extremamente necessário para determinação deáreas de risco. A cidade de Altamira-PA, localizada às margens do rio Xingu, vem sofrendo com casos extremos de cheias que tendem a provocar inundações, resultando em severos prejuízos para a sua população. Considerando o problema, este artigo apresenta a proposta de um sistema de previsão de nível mensal do Rio Xingu baseado em Redes Neurais Artificiais Perceptron de múltiplas camadas. Para o desenvolvimento do sistema foram utilizados dados de precipitação na bacia e sub-bacias do Rio Xingu, e informações de Temperatura da Superfície do Mar (TSM) do período de 1979 a 2016. Os resultados satisfatórios obtidos demonstram a grande aplicabilidade das Redes Neurais Artificiais para o problema de previsão de cheias.
O uso adequado de métodos de previsão pode auxiliar na prevenção, no gerenciamento e no planejamento de situações críticas. Métodos de previsão de variáveis de interesse podem ser endereçados como problemas de previsão de séries temporais. A previsão de séries temporais apresenta algumas questões em aberto, correntemente estudadas, entre estas questões estão (1) como definir o tamanho ótimo da janela de entrada do método de previsão e (2) como definir os conjuntos de variáveis (outras séries temporais) que impactam no modelo. Neste artigo, apresentamos como um algoritmo evolutivo pode ser empregado para escolher as variáveis climáticas e o tamanho dessas janelas para aumentar a precisão do modelo preditivo. O algoritmo evolutivo é empregado em um estudo de caso considerando níveis máximos do rio Xingu utilizando 18 diferentes séries temporais de variáveis climáticas. Mostramos também como configurações do algoritmo evolutivo podem levar a resultados mais consistentes.
O conhecimento acerca da amplitude do transbordamento dos leitos fluviais é extremamente necessário para determinação de áreas de risco. A cidade de Altamira-PA, localizada às margens do rio Xingu, vem sofrendo com casos extremos de cheias que tendem a provocar inundações, resultando em severos prejuízos para a sua população. Considerando o problema, este artigo apresenta a proposta de um sistema de previsão de nível mensal do Rio Xingu baseado em Redes Neurais Artificiais Perceptron de múltiplas camadas. Para o desenvolvimento do sistema foram utilizados dados de precipitação na bacia e sub-bacias do Rio Xingu, e informações de Temperatura da Superfíciedo Mar (TSM) do período de 1979 a 2016. Os resultados satisfatórios obtidos demonstram a grande aplicabilidade das Redes Neurais Artificiais para o problema de previsão de cheias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.