Acid-modified phonolite material, Al 2 O 3 /foam zeolite and foam zeolite were used as supports for NiW catalysts. The zeolite type materials were prepared by a novel procedure from natural clinoptilolite. Phonolite materials were loaded with 5, 7.5 and 10 wt% of Ni containing 10, 7.5 and 5 wt% of W. Al 2 O 3 /foam zeolite contained 4 and 13 wt% of Ni and W and pure foamed zeolite was effectively loaded with 5 and 16 wt% of Ni and W. NiW/Al 2 O 3 catalyst (3 wt% Ni and 11 wt% of W) was used for comparison of catalytic properties of synthesized materials. Catalytic tests were carried out in an autoclave pressurized at 7 MPa (H 2 ) at room temperature and then heated to 365 °C for 1 h. Catalysts were characterized by N 2 physisorption, XRD, XRF, NH 3 -TPD, CO 2 -TPD and H 2 -TPR. Catalyst properties were compared for the HDO of rendering fat into hydrocarbons. The liquid products were analyzed by simulated distillation, C, H, N, S elemental analysis, ATR and density (15 °C). Gaseous products were characterized by RGA-GC. Used catalysts were also analyzed by N 2 -TGA and O 2 -TGA. Novel phonolite modified solids and NiW/foam zeolite type materials were tested for the first time as catalysts being in some cases more active than NiW/Al 2 O 3 material. Ni(5%)W(10%)/Acid phonolite and NiW/Foamed Zeolite resulted to be the most active materials for the HDO and hydrocracking reactions. The lowest amount of carbonaceous species on the surface of tested catalyst was found for the Ni(5%)W(10%)/Acid phonolite solid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.