Precise delivery of therapeutics to the target structures is essential for treatment efficiency and safety. Drug administration via conventional routes requires overcoming multiple transport barriers to achieve and maintain the local drug concentration and commonly results in unwanted off-target effects. Patients’ compliance with the treatment schedule remains another challenge. Implantable drug delivery systems (IDDSs) provide a way to solve these problems. IDDSs are bioengineering devices surgically placed inside the patient’s tissues to avoid first-pass metabolism and reduce the systemic toxicity of the drug by eluting the therapeutic payload in the vicinity of the target tissues. IDDSs present an impressive example of successful translation of the research and engineering findings to the patient’s bedside. It is envisaged that the IDDS technologies will grow exponentially in the coming years. However, to pave the way for this progress, it is essential to learn lessons from the past and present of IDDSs clinical applications. The efficiency and safety of the drug-eluting implants depend on the interactions between the device and the hosting tissues. In this review, we address this need and analyze the clinical landscape of the FDA-approved IDDSs applications in the context of the foreign body reaction, a key aspect of implant–tissue integration.
Control over endogenous reparative mechanisms is the future of regenerative medicine. The rabbit ear defect is a rare model which allows the observation of the epimorphic regeneration of elastic cartilage. However, the mechanisms of phenotypical restoration of this highly differentiated tissue have not been studied. We modelled circular ear defects of different sizes (4, 6, and 8 mm in diameter) in 12 laboratory rabbits, and observed them during 30, 60, 90, and 120 day periods. Excised tissues were processed and analyzed by standard histological methods and special histochemical reactions for senescence associated-β-galactosidase and lectin markers. We demonstrated that larger defects caused significant elevation of senescence associated-β-galactosidase in chondrocytes. The fullness of epimorphic regeneration of elastic cartilage depended on the activation of cellular senescence and synthesis of elastic fibers. Further investigation into the role of cells with senescence-associated secretory phenotype in damaged tissues can present new targets for controlled tissue regeneration.
In this work, a program was developed based on U-Net and VGG neural network architectures for segmentation and analysis of scan images of kidney and colon tissues. The program maps up to 12 classes of anatomical structures in tissues, and also allows the calculation of predictive histological biomarkers to support physician decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.