Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
BackgroundResearch on Genomic medicine has suggested that the exposure of patients to early life risk factors may induce the development of chronic diseases in adulthood, as the presence of premature risk factors can influence gene expression. The large number of scientific papers published in this research area makes it difficult for the healthcare professional to keep up with individual results and to establish association between them. Therefore, in our work we aim at building a computational system that will offer an innovative approach that alerts health professionals about human development problems such as cardiovascular disease, obesity and type 2 diabetes.MethodsWe built a computational system called Chronic Illness Surveillance System (CISS), which retrieves scientific studies that establish associations (conceptual relationships) between chronic diseases (cardiovascular diseases, diabetes and obesity) and the risk factors described on clinical records. To evaluate our approach, we submitted ten queries to CISS as well as to three other search engines (Google™, Google Scholar™ and Pubmed®;) — the queries were composed of terms and expressions from a list of risk factors provided by specialists.ResultsCISS retrieved a higher number of closely related (+) and somewhat related (+/-) documents, and a smaller number of unrelated (-) and almost unrelated (-/+) documents, in comparison with the three other systems. The results from the Friedman’s test carried out with the post-hoc Holm procedure (95% confidence) for our system (control) versus the results for the three other engines indicate that our system had the best performance in three of the categories (+), (-) and (+/-). This is an important result, since these are the most relevant categories for our users.ConclusionOur system should be able to assist researchers and health professionals in finding out relationships between potential risk factors and chronic diseases in scientific papers.
Many classification problems, especially in the field of bioinformatics, are associated with more than one class, known as multi-label classification problems. In this study, we propose a new adaptation for the Binary Relevance algorithm taking into account possible relations among labels, focusing on the interpretability of the model, not only on its performance. Experiments were conducted to compare the performance of our approach against others commonly found in the literature and applied to functional genomic datasets. The experimental results show that our proposal has a performance comparable to that of other methods and that, at the same time, it provides an interpretable model from the multi-label problem.
SummarySummary: Increased knowledge about nutritional status and energy and nutrient intakes is required to improve the treatment of patients with heart failure (HF).Objectives: To verify the nutritional status and evaluate the adequacy of energy, macronutrient and micronutrient intakes in patients with HF in outpatient clinical settings.Methods: We collected anthropometric and habitual dietary intake data of 125 patients (72% men, 52.1 ± 9.8 years, BMI 26.9 ± 4.4 kg/m2). Anthropometric variables were compared between genders, and the adequacy of energy and nutrient intakes was analyzed according to current recommendations.Results: Muscle depletion or risk of depletion was present in 38.4% of patients (association with male gender, p <0.0001). In 69.6% of cases the mean energy intake was lower than the one required (p <0.0001). Among the micronutrients evaluated in this study, there was an important prevalence of inadequacy in magnesium, zinc, iron and thiamine intakes, and most patients had calcium and potassium intakes below the adequate levels, and sodium intake above the adequate levels. Conclusions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.