Cystathionine β-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed β-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H 2 S.
The Medicago truncatula N5 gene is induced in roots after Sinorhizobium meliloti infection and it codes for a putative lipid transfer protein (LTP), a family of plant small proteins capable of binding and transferring lipids between membranes in vitro. Various biological roles for plant LTP in vivo have been proposed, including defense against pathogens and modulation of plant development. The aim of this study was to shed light on the role of MtN5 in the symbiotic interaction between M. truncatula and S. meliloti. MtN5 cDNA was cloned and the mature MtN5 protein expressed in Escherichia coli. The lipid binding capacity and antimicrobial activity of the recombinant MtN5 protein were tested in vitro. MtN5 showed the capacity to bind lysophospholipids and to inhibit M. truncatula pathogens and symbiont growth in vitro. Furthermore, MtN5 was upregulated in roots after infection with either the fungal pathogen Fusarium semitectum or the symbiont S. meliloti. Upon S. meliloti infection, MtN5 was induced starting from 1 day after inoculation (dpi). It reached the highest concentration at 3 dpi and it was localized in the mature nodules. MtN5-silenced roots were impaired in nodulation, showing a 50% of reduction in the number of nodules compared with control roots. On the other hand, transgenic roots overexpressing MtN5 developed threefold more nodules with respect to control roots. Here, we demonstrate that MtN5 possesses biochemical features typical of LTP and that it is required for the successful symbiotic association between M. truncatula and S. meliloti.
Calcium (Ca(2+)) plays a major role in a variety of cellular processes. Fine changes in its concentration are detected by calcium sensor proteins, which adopt specific conformations to regulate their molecular targets. Here, two distinct nanodevices were probed as biocompatible carriers of Ca(2+)-sensors and the structural and functional effects of protein-nanodevice interactions were investigated. The prototypical Ca(2+)-sensor recoverin (Rec) was incubated with 20-25 nm CaF2 nanoparticles (NPs) and 70-80 nm liposomes with lipid composition similar to that found in photoreceptor cells. Circular dichroism and fluorescence spectroscopy were used to characterize changes in the protein secondary and tertiary structure and in thermal stability upon interaction with the nanodevice, both in the presence and in the absence of free Ca(2+). Variations in the hydrodynamic diameter of the complex were measured by dynamic light scattering and the residual capability of the protein to act as a Ca(2+)-sensor in the presence of NPs was estimated spectroscopically. The conformation, thermal stability and Ca(2+)-sensing capability of Rec were all significantly affected by the presence of NPs, while liposomes did not significantly perturb Rec conformation and function, allowing reversible binding. NP-bound Rec maintained an all-helical fold but showed lower thermal stability and high cooperativity of unfolding. Our analysis can be proficiently used to validate the biocompatibility of other nanodevices intended for biomedical applications involving Ca(2+)-sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.