The effects of Stöber silica nanoparticles on neuronal survival, proliferation, and on the underlying perturbations in calcium homeostasis are investigated on the well-differentiated neuronal cell line GT1-7. The responses to nanoparticles 50 and 200 nm in diameter are compared. The 50-nm silica affects neuronal survival/proliferation in a dose-dependent way, by stimulating apoptotic processes. In contrast, the 200-nm silica does not show any toxic effect even at relatively high concentrations (292 μg mL−1). To identify the mechanisms underlying these effects, the changes in intracellular calcium concentration elicited by acute and chronic administration of the two silica nanoparticles are analyzed. The 50-nm silica at toxic concentrations generates huge and long-lasting increases in intracellular calcium, whereas the 200-nm silica only induces transient signals of much lower amplitude. These findings provide the first evidence that silica nanoparticles can induce toxic effects on neuronal cells in a size-dependent way, and that these effects are related to the degree of perturbation of calcium homeostasis.
SiO 2 nanoparticles (NPs), in addition to their widespread utilization in consumer goods, are also being engineered for clinical use. They are considered to exert low toxicity both in vivo and in vitro, but the mechanisms involved in the cellular responses activated by these nanoobjects, even at non toxic doses, have not been characterized in detail.This is of particular relevance for their interaction with the nervous system: silica NPs are good candidates for nanoneuromedicine applications. Here, by using the GT1-7 neuronal cell line, derived from gonadotropin hormone releasing hormone (GnRH) neurons, we describe the mechanisms involved in the perturbation of calcium signaling, a key controller of neuronal function. At the non toxic dose of 20 µg mL -1 , 50nm SiO 2 NPs induce long lasting but reversible calcium signals, that in most cases show a complex oscillatory behavior. Using fluorescent NPs, we show that these signals do not depend on NPs internalization, are totally ascribable to calcium influx and are dependent in a complex way from size and surface charge. We provide evidence of the involvement of voltage-dependent and transient receptor potential-vanilloid 4 (TRPV4) TRPV4 channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.