The genus Circovirus includes one of the most relevant infectious agents affecting domestic pigs, Porcine circovirus type 2 (PCV-2). The wild boar susceptibility to this pathogen has also been demonstrated although the actual epidemiological role of wild populations is still debated. In recent times, a new circovirus, Porcine circovirus type 3 (PCV-3), has been discovered and reported in the presence of several clinical conditions. However, no information is currently available about PCV-3 circulation and prevalence in wild boar. To fill this gap, 187 wild boar serum samples were collected in the Colli Euganei Regional Park (Northern Italy) and screened for PCV-3, demonstrating a high viral prevalence (approximately 30%). No gender differences were demonstrated while a lower infection prevalence was observed in animals younger than 12 months compared to older ones, differently from what described in commercial pigs. Almost all sampled animals were in good health conditions and no association was proven between PCV-3 status and clinical syndromes in wild animals. The genetic characterization of selected strains enlightened a relevant variability and the absence of closely related strains originating from domestic pigs. Therefore, the observed scenario is suggestive of multiple introductions from other wild or domestic swine populations followed by prolonged circulation and independent evolution. Worldwide, this study reports for the first time the high susceptibility of the wild boar to PCV-3 infection. The high prevalence and the absence of association with clinical signs support the marginal role of this virus in the wild boar population ecology. However, its epidemiological role as reservoir endangering commercial swine cannot be excluded and will require further investigations.
Porcine circovirus 3 (PCV-3) has emerged as a potential threat for swine industry, being consistently reported in the presence of several clinical signs all around the world.Recently, its presence in wild boar has been demonstrated at high prevalence. This evidence is surprising since the lower density of wild populations might not be expected to sustain such efficient viral transmission. Porcine circoviruses were proven to exhibit a certain plasticity in the host tropism and were detected in unrelated species, like mice, dogs and ruminants. However, if this scenario applies also to wild animals remains to be established. Therefore, this study aimed to investigate the presence of PCV-3 in wild ungulates other than wild boar and in related hematophagous ectoparasites. One hundred and nine animals were sampled from different hilly and mountain areas of Friuli Venezia Giulia, including 9 chamois (Rupicapra rupicapra), 17 red deer (Cervus elaphus), 4 mouflons (Ovis musimon), 50 roe deer (Capreolus capreolus) and 29 wild boars (Sus scrofa). Additionally, host-matched ectoparasites were collected when present. Porcine circovirus 3 was diagnosed using molecular techniques and sequencing. This study results confirmed the high PCV-3 occurrence in wild boar and reported for the first time its presence, at low prevalence, in chamois and roe deer. Moreover, two ticks (Ixodes ricinus), one of which non-engorged, collected from PCV-3 negative roe deer, tested PCV-3 positive. The genetic characterization of some of the strains collected from non-swine hosts allowed to prove that, albeit clearly part of PCV-3 species, they were genetically unique, demonstrating the absence of among-samples contamination and thus confirming the actual presence of PCV-3 genome in these new hosts. Therefore, this study highlights an unexpected broad PCV-3 distribution and circulation in the wild, rising further questions on porcine circoviruses infectious cycle, epidemiology and origin, which will deserve additional investigations.
A survey on tick density and on tick-borne zoonoses was carried out in four public parks in the outskirts of Imola (northern Italy) from June to October 2006. All stages of Ixodes ricinus and only larvae of Riphicephalus sanguineus were recovered by dragging, performed on 100-m transects. Almost all ticks (99%) were harvested in one park. I. ricinus density (nymphs/100 m(2) ) ranged from 0 in park L to 6.3 in park F. Nymphs and adults of I. ricinus were subjected to PCR for Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi s. l. and Rickettsia spp. The observed prevalences were 38.3% for Bartonella henselae, 5.2% for Bartonella clarridgeiae, 10.4% for B. burgdorferi s. l., 2.6% for Rickettsia helvetica and 13% for Rickettsia monacensis, respectively. No DNA of A. phagocytophilum was found. Acarological risks (AR) were calculated as probabilities of collecting at least one infected nymph per transect. The AR values calculated for the various zoonotic agents were 11.4% for R. helvetica, 27.7% for B. clarridgeiae, 49.7% for B. burgdorferi s. l., 57.2% for R. monacensis and 90.4% for B. henselae, respectively. In this study, B. clarridgeiae was for the first time identified in I. ricinus ticks.
Porcine circovirus 2 (PCV-2) is one of the most impactful and widespread pathogens of the modern swine industry. Unlike other DNA viruses, PCV-2 is featured by a remarkable genetic variability, which has led to the emergence and recognition of different genotypes, some of which (PCV-2a, 2b, and 2d) have alternated over time. Currently, PCV-2d is considered the most prevalent genotype, and some evidence of differential virulence and vaccine efficacy have been reported. Despite the potential practical relevance, the data on PCV-2 epidemiology in Italy are quite outdated and do not quantify the actual circulation of this genotype in Italy. In the present study, 82 complete ORF2 sequences were obtained from domestic pigs and wild boars sampled in Northern Italy in the period 2013–2018 and merged with those previously obtained from Italy and other countries. A combination of phylogenetic, haplotype network, and phylodynamic analyses were used to genotype the collected strains and evaluate the temporal trend and the spatial and host spread dynamics. A rising number of PCV-2d detections was observed in domestic pigs, particularly since 2013, reaching a detection frequency comparable to PCV-2b. A similar picture was observed in wild boars, although a lower sequence number was available. Overall, the present study demonstrates the extreme complexity of PCV-2 molecular epidemiology in Italy, the significant spread across different regions, the recurrent introduction from foreign countries, and the frequent occurrence of recombination events. Although a higher viral flux occurred from domestic to wild populations than vice versa, wild boars seem to maintain PCV-2 infection and spread it over relatively long distances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.