The main aim of the present study was to evaluate the level of antibiotic resistance, prevalence and virulence features of methicillin-resistant Staphylococcus aureus (MRSA) isolated from heavy swine at abattoir level and farming environments in Lombardy (Northern Italy). With this scope, 88 different heavy swine farms were surveyed, obtaining a total of n = 440 animal swabs and n = 150 environmental swabs. A total of n = 87 MRSA isolates were obtained, with an overall MRSA incidence of 17.50% (n = 77) among animal samples and a 6.67% (n = 10) among environmental. Molecular characterisation using multilocus sequence typing (MLST) plus spa-typing showed that sequence type ST398/t899 and ST398/t011 were the most commonly isolated genotypes, although other relevant sequence types such as ST1 or ST97 were also found. A lack of susceptibility to penicillins, tetracycline and ceftiofur was detected in >91.95, 85.05 and 48.28% of the isolates, respectively. Resistance to doxycycline (32.18%), enrofloxacin (27.59%) and gentamicin (25.29%) was also observed. Additionally, a remarkable level of antibiotic multiresistance (AMR) was observed representing a 77.01% (n = 67) of the obtained isolates. Genetic analysis revealed that 97.70% and 77.01% of the isolates harboured at least one antibiotic resistance or enterotoxin gene, respectively, pointing out a high isolate virulence potential. Lastly, 55.17% (n = 48) were able to produce measurable amounts of biofilm after 24 h. In spite of the current programmes for antibiotic reduction in intensively farming, a still on-going high level of AMR and virulence potential in MRSA was demonstrated, making this pathogen a serious risk in swine production chain, highlighting once more the need to develop efficient, pathogen-specific control strategies.
The complex health problem of antimicrobial resistance (AMR) involves many host species, numerous bacteria and several routes of transmission. Extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing Escherichia coli are among the most important strains. Moreover, wildlife hosts are of interest as they are likely antibiotics free and are assumed as environmental indicators of AMR contamination. Particularly, wild boar (Sus scrofa) deserves attention because of its increased population densities, with consequent health risks at the wildlife–domestic–human interface, and the limited data available on AMR. Here, 1504 wild boar fecal samples were microbiologically and molecularly analyzed to investigate ESBL/AmpC-producing E. coli and, through generalized linear models, the effects of host-related factors and of human population density on their spread. A prevalence of 15.96% of ESBL/AmpC-producing E. coli, supported by blaCTX-M (12.3%), blaTEM (6.98%), blaCMY (0.86%) and blaSHV (0.47%) gene detection, emerged. Young animals were more colonized by ESBL/AmpC strains than older subjects, as observed in domestic animals. Increased human population density leads to increased blaTEM prevalence in wild boar, suggesting that spatial overlap may favor this transmission. Our results show a high level of AMR contamination in the study area that should be further investigated. However, a role of wild boar as a maintenance host of AMR strains emerged.
The genotyping of B. hyodysenteriae isolates and a database of all the genetic profiles collected during the diagnostic activities could support traditional epidemiological investigations in identifying infection sources and routes of transmission among herds, and in developing more effective control measures.
Shiga toxin type 2e (Stx2e) Escherichia coli is the causative factor of diarrhea and edema in swine. The aims of this study were to determine the prevalence of Stx2e-producing E. coli isolates and to characterize isolates from clinical cases of pig colibacillosis and healthy swine. During the 11 years of the study (2006-2017), a total of 233 Stx2e-producing isolates were detected−230 out of 2,060 (11.16%) E. coli isolated from diseased pigs and 3 out of 171 (1.75%) from healthy swine. Stx2e-producing isolates were indeed more present in clinical colibacillosis cases than in healthy pigs (p = 0.0002). The predominant serogroup was O139 (79.82%) and the most common fimbrial factor present in these isolates was F18 (177 isolates), followed by F6 (5 isolates). The enterotoxins LTI, STa, and STb were detected in 10.43, 41.73, and 48.26% of the isolates, respectively. The predominant virotypes F18-Stx2e and-STa-STb-Stx2e were similarly present in weaners (33.33 and 35.52%) and finishers (38.30 and 25.53%). Among isolates from diseased pigs, O139 and F18 were the more frequently identified serogroup and virulence factor, respectively. Of the tested 230 Stx2e-producing isolates isolated from diseased pigs, 29 (12.60%) harbored genes encoding ESBL, particularly TEM (79.30%), CTX-M1 (17.20%), and CMY-2 (3.40%). Antimicrobial resistance to tetracycline was the most common characteristic (98.25%), followed by ampicillin (93.91%), cephalotin (90.43%) and trimethoprim/sulfamethoxazole (82.17%). Our results showed that Stx2e-producing E. coli were more frequently associated with clinical forms of colibacillosis, with minimal probability to isolate these isolates from healthy pigs.
In this study, we investigated the dynamics of Mycoplasma hyopneumoniae infections in 66 pig farms, with different production systems (one-, two-, and three-site systems), and considered different risk factors. Serological assay was used to detect serum antibodies against M. hyopneumoniae and real time polymerase chain reaction (RT-PCR) was performed to detect M. hyopneumoniae DNA in tracheobronchial swabs. Results demonstrated that M. hyopneumoniae infection status was predominantly influenced by the age of the animals and the type of production system. Infection rates were higher in older animals and the prevalence was higher in the one- and two-site systems than in the three-site systems. Dynamics of infection by RT-PCR showed that earlier M. hyopneumoniae infection on one-site farms occurs earlier, while on two- and three-site farms occurs later but spreads faster, suggesting that contact between animals of different age favors the transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.