In humans, the type I interferon (IFN) family consists of 13 IFN- § subtypes, IFN-g and IFN-J ; the newly discovered IFN-like family consists of IFN-Q 1, -Q 2 and -Q 3. We have investigated the expression of type I and Q IFN genes following virus infections or Toll-like receptor (TLR) triggering in monocyte-derived DC (MDDC) and plasmacytoid DC (pDC). We found that all IFN- § , -g , -J and -Q subtypes are expressed in influenza-virus-infected MDDC or pDC. Conversely, differential type I IFN gene transcription was induced in MDDC and pDC stimulated by specific TLR agonists. TLR-9 stimulation by CpG DNA induced the expression of all IFN- § , -g , -J and -Q subtypes in pDC, whereas TLR-4 stimulation by LPS, or TLR-3 stimulation by poly I:C, induced only IFN-g and IFN-Q gene expression in MDDC. The expression pattern of IFN regulatory factor (IRF)-5 and IRF-7 in MDDC and pDC was also determined. IRF-5 was constitutively expressed in the two DC subsets whereas IRF-7 was constitutive in pDC but its expression was induced along MDDC maturation. Overall, our data indicate that the coordinated expression of IFN-Q with IFN-g would be of crucial importance for the maturation of DC.
Macrophages and dendritic cells (DC) play an essential role in the initiation and maintenance of immune response to pathogens. To analyze early interactions between Mycobacterium tuberculosis (Mtb) and immune cells, human peripheral blood monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) were infected with Mtb. Both cells were found to internalize the mycobacteria, resulting in the activation of MDM and maturation of MDDC as reflected by enhanced expression of several surface Ags. After Mtb infection, the proinflammatory cytokines TNF-α, IL-1, and IL-6 were secreted mainly by MDM. As regards the production of IFN-γ-inducing cytokines, IL-12 and IFN-α, was seen almost exclusively from infected MDDC, while IL-18 was secreted preferentially by macrophages. Moreover, Mtb-infected MDM also produce the immunosuppressive cytokine IL-10. Because IL-10 is a potent inhibitor of IL-12 synthesis from activated human mononuclear cells, we assessed the inhibitory potential of this cytokine using soluble IL-10R. Neutralization of IL-10 restored IL-12 secretion from Mtb-infected MDM. In line with these findings, supernatants from Mtb-infected MDDC induced IFN-γ production by T cells and enhanced IL-18R expression, whereas supernatants from MDM failed to do that. Neutralization of IFN-α, IL-12, and IL-18 activity in Mtb-infected MDDC supernatants by specific Abs suggested that IL-12 and, to a lesser extent, IFN-α and IL-18 play a significant role in enhancing IFN-γ synthesis by T cells. During Mtb infection, macrophages and DC may have different roles: macrophages secrete proinflammatory cytokines and induce granulomatous inflammatory response, whereas DC are primarily involved in inducing antimycobacterial T cell immune response.
As a result of their close association with the blood-brain barrier, astrocytes play an important role in regulating the homing of different leukocyte subsets to the inflamed central nervous system (CNS). In this study, we investigated whether human astrocytes produce chemokines that promote the migration of myeloid dendritic cells (DCs). By reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, we show that cultured human astrocytes stimulated with interleukin-1beta and tumor necrosis factor produce CCL2, CCL3, CCL4, CCL5, CCL20, and CXCL12 that act on immature DCs, but not CCL19 and CCL21, 2 chemokines specific for mature DCs. Compared with controls, supernatants of cytokine-stimulated astrocytes are more effective in promoting the migration of immature monocyte-derived DCs (iMDDCs). Desensitization of CXCR4 (receptor for CXCL12), CCR1-3-5 (shared receptors for CCL3-4-5), and CCR6 (receptor for CCL20) on iMDDC reduces cell migration toward astrocyte supernatants, indicating that astrocytes release biologically relevant amounts of iMDDC-attracting chemokines. By immunohistochemistry, we show that CXCL12 and, to a lesser extent, CCL20 are expressed by reactive astrocytes in multiple sclerosis lesions. These data lend support to the idea that astrocyte-derived chemokines may contribute to immature DC recruitment to the inflamed CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.